Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/50571
Cómo citar
Título: | LQ-GNN: A Graph Neural Network model for response time prediction of microservice-based applications in the computing continuum. |
Autor: | Matías, Richart Gorricho, Juan-Luis Baliosian, Javier Contreras, Luis M. Muniz, Alejandro Serrat, Joan |
Tipo: | Artículo |
Palabras clave: | Computing Continuum, Elasticity, Microservicebased applications, Graph Neural Networks, Machine Learning |
Fecha de publicación: | 2025 |
Resumen: | To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine earning (ML) approach to develop a generalized performance prediction model for microservicebased plications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the roposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems. |
Editorial: | IEEE |
EN: | IEEE Transactions on Parallel and Distributed Systems, pp. 1-12. |
Citación: | Matías, R., Gorricho, J., Baliosian, J., y otros. "LQ-GNN: A Graph Neural Network model for response time prediction of microservice-based applications in the computing continuum". IEEE Transactions on Parallel and Distributed Systems. [en línea] 2025, pp. 1-12. DOI: 10.1109/TPDS.2025.3564214. |
Licencia: | Licencia Creative Commons Atribución (CC - By 4.0) |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Computación |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RGBCMS25.pdf | Versión aceptada | 5,44 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons