english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50571 Cómo citar
Título: LQ-GNN: A Graph Neural Network model for response time prediction of microservice-based applications in the computing continuum.
Autor: Matías, Richart
Gorricho, Juan-Luis
Baliosian, Javier
Contreras, Luis M.
Muniz, Alejandro
Serrat, Joan
Tipo: Artículo
Palabras clave: Computing Continuum, Elasticity, Microservicebased applications, Graph Neural Networks, Machine Learning
Fecha de publicación: 2025
Resumen: To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine earning (ML) approach to develop a generalized performance prediction model for microservicebased plications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the roposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems.
Editorial: IEEE
EN: IEEE Transactions on Parallel and Distributed Systems, pp. 1-12.
Citación: Matías, R., Gorricho, J., Baliosian, J., y otros. "LQ-GNN: A Graph Neural Network model for response time prediction of microservice-based applications in the computing continuum". IEEE Transactions on Parallel and Distributed Systems. [en línea] 2025, pp. 1-12. DOI: 10.1109/TPDS.2025.3564214.
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Computación

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RGBCMS25.pdfVersión aceptada 5,44 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons