JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

LQ-GNN: A Graph Neural Network Model for
Response Time Prediction of Microservice-based
Applications in the Computing Continuum

Matias Richart, Juan-Luis Gorricho, Javier Baliosian, Luis M. Contreras, Alejandro Muiiiz and Joan Serrat

Abstract—To address the challenges posed by the deployment
of microservices of future end-user applications in the cloud
continuum, a performance prediction model working together
with a network elasticity controller will be needed. With that aim,
this work introduces Layered Queuing-Graph Neural Networks
(LQ-GNN), a novel Machine Learning (ML) approach to develop
a generalized performance prediction model for microservice-
based applications.

Unlike previous works focused on individual applications,
our proposal aims for a versatile model applicable to any
microservice-based application, integrating the Layered Queue-
ing Network (LQN) modeling with Graph Neural Networks
(GNN). LQ-GNN allows to efficiently estimate the response time
of applications under different resource allocations and place-
ments on the computing continuum. The obtained evaluation
results indicate that the proposed model achieves a prediction
error below 10% when considering different evaluation scenarios.

Compared to existing methodologies, our approach balances
prediction accuracy and computational efficiency, making it vi-
able for real-time deployments. Consequently, ML-based perfor-
mance prediction can significantly enhance the resource manage-
ment and elasticity control of microservice-based architectures,
leading to more resilient and efficient systems.

Index Terms—Computing Continuum, Elasticity, Microservice-
based applications, Graph Neural Networks, Machine Learning.

I. INTRODUCTION

N the last decade, more and more computing tasks have

been shifted to the cloud, driven by the advantages of
resource flexibility for users and CapEx (Capital Expenditures)
efficiency for both users and service providers [1]. Users
benefit from the ability to scale their demand for resources
as needed, paying only for usage time, while cloud operators
maximize their cost efficiency by sharing their infrastructure
among multiple users. In recent years, fog and edge comput-
ing have emerged as extensions of cloud computing, getting
closer to data sources and establishing a seamless computing
continuum [2].

The computing continuum facilitates the deployment of
novel services across a distributed infrastructure, catering to

Matias Richart and Javier Baliosian are with the Computer Science De-
partment, School of Engineering, University of the Republic, Montevideo,
Uruguay (e-mail: mrichart@fing.edu.uy; baliosian@fing.edu.uy).

Matias Richart, Juan-Luis Gorricho and Joan Serrat are with the with the
Department of Network Engineering, Polytechnic University of Catalonia,
Barcelona, Spain (e-mail: juan.serrat@upc.edu; juan.luis.gorricho@upc.edu).

Alejandro Muiliz and Luis M. Contreras are with Telefénica
CTIO, Madrid, Spain (e-mail: alejandro.muniz@telefonica.com;
luismiguel.contrerasmurillo @telefonica.com).

various applications such as autonomous vehicles, smart cities,
or content delivery. These services exhibit diverse require-
ments and are often unlikely to be supported only by tradi-
tional remote cloud computing. For instance, they may need
low-latency connections for a rapid decision-making regarding
their input data sources and a significant computing capacity
for intricate data analysis. The computing continuum solution
offers a wide range of computational and communication
resources, promoting more effective support of heterogeneous
demands.

On the other hand, recently, there has been a significant
adoption of the so-called multi-tier microservice architecture
as an alternative software development framework for cloud
applications [3]. This new paradigm moves away from the
conventional monolithic application, where a single service
encapsulates all functionality, towards a model where indi-
vidual microservices provide fine-grained, single-concern, and
loosely-coupled services. This architecture enables building
more sophisticated functionalities [4] depending on the chosen
microservices composition.

Microservices are intended to be deployed on the cloud
continuum to run latency-sensitive applications that interact
directly with their end-users [5]. In this sense, availability
and response time metrics reflect the user’s experience and
are commonly established as service-level objectives (SLOs).
Particularly for microservice-based applications, the response
time SLO (also named application latency in the literature)
holds significant importance, and to meet this objective, many
operators have traditionally allocated some excess resources on
their cloud platforms. However, this practice incurs a consider-
able cost, where commonly 20% of the computing cost is due
to over-provisioning [6]. Hence, even minor enhancements in
cloud resource allocation could lead to substantial cost savings
at scale.

In the above scenario, to preserve an efficient use of
resources, it is mandatory to satisfactorily solve the problem
of resource allocation. The aim is to minimize the assigned
resources while meeting all QoS requirements. Moreover,
since applications workloads are time-variant, it is desirable
to dynamically adjust the allocated resources (such as CPU,
RAM, or even new microservice instances) in real-time. The
approach of dynamically, autonomously and optimally adapt-
ing to a varying workload is known as elasticity, and it is
generally implemented by a so-called elasticity controller [7].

Unlike monolithic deployments, microservices promote a
more accurate resource allocation by scaling individual ap-

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

plication components. However, this fine granularity presents
unique challenges to implement the elasticity concept, differ-
ent from those of conventional Service Oriented Architecture
(SOA) applications [8]. Microservices add complexity to re-
source management, as the elasticity controller must consider
the dependencies between microservices to ensure the required
quality of service (see Section II for more details). In ad-
dition, given the implications of dependencies, microservice-
based applications may experience some specific performance
phenomena when the workload changes very quickly [9].

To overcome these challenges and effectively implement an
elasticity approach, it is necessary to conceive a model to
predict the performance of different potential resource allo-
cation and placement solutions for the constituent microser-
vices of the applications. In this regard, Machine Learning
(ML) approaches have emerged as a powerful modeling and
prediction tool [9]-[12]. However, despite recent advances
in machine learning to solve this problem, a fundamental
limitation of existing works comes from the resultant learned
models, as they are specific to the application used for training.
In addition, the above-mentioned ML-based works are based
on learning specific relationships, like the traffic load with the
application response time, instead of the dependencies between
microservices.

In this paper, we seek to overcome these limitations and
build a more generic performance predictor, as a necessary
tool for any microservice-based application deployment and
placement, as an effective enabler of elasticity in the cloud
continuum. The contributions made by this work can be
summarized as follows: First, we adopt the Layered Queueing
Networks (LQNs) [13] technique to build an enriched graph
model for applications based on microservices. Second, we
adapt the LQN resultant graph of any application to be used
as the input of a Graph Neural Network (GNN) to predict
the application deployment’s performance given the allocated
resources and placement of the corresponding microservices.
Finally, we develop a testing environment to assess the ac-
curacy of our performance predictions, comparing the results
of the GNN predictions with those obtained by means of a
conveniently adapted state-of-the-art simulator. The proposed
predictor could then be used as part of an elasticity controller
to decide the best deployment option for the application,
although this is out of the scope of this work.

II. CHALLENGES FOR PERFORMANCE PREDICTION OF
MICROSERVICE-BASED APPLICATIONS

Performance prediction for resource allocation and elasticity
of microservice-based applications presents significant chal-
lenges, primarily due to the distributed and interdependent
nature of their constituent microservices. Unlike traditional
monolithic systems, microservices require the elasticity con-
troller to manage resource allocation across multiple loosely
coupled services while ensuring end-to-end Quality of Service
(QoS). This complexity arises from the dependencies between
microservices and their placement across a computing contin-
uum, creating several performance prediction challenges.

One key challenge is the variability of execution paths
for different types of requests. For instance, in the Social

Network application proposed in [8], requests such as reading
a user’s timeline or viewing another user’s posts follow differ-
ent ordered sequences of microservices. Figure 1 shows part
of the application’s architecture and illustrates the distinctive
paths taken by different types of requests. Complementarily,
some microservices handle multiple request types (e.g., Post
Storage), while others are specific to particular paths (e.g.,
Home Timeline). Moreover, even for a single request type,
different sub-paths may be followed based on data availability,
leading to varying workloads across microservices.

Performance prediction becomes even more difficult due
to backpressure effects. This occurs when a microservice
experiences an increased response time not because of its
own resource saturation, but due to congestion in downstream
services. For example, if the Post Storage MongoDB becomes
slow, requests will pile up at the Post Storage service, inflating
the response time despite adequate resource availability. This
makes it challenging to identify the root cause of QoS viola-
tions, as neither resource utilization nor response time alone
can accurately indicate where performance issues originate.

Another major issue is the cascading effect [9], where se-
quential scaling causes delays in accommodating an increased
load. When a bottleneck microservice scales up, the resultant
load increase propagates downstream, potentially requiring
subsequent microservices to scale up as well. This step-
by-step adjustment delays the system’s overall response to
traffic spikes, worsening performance degradation during peak
demand periods.

The combination of backpressure and cascading effects ex-
acerbates the difficulty in pinpointing performance bottlenecks
and the intended timely scaling. Mistaking the source of
degradation can lead to delayed resource allocations, allowing
queues to grow and consequently prolonging the recovery
time.

Finally, the distributed deployment of microservices across
diverse physical nodes introduces network strain, particularly
under high load. Reliance on RPC or HTTP communications
means that network delays can significantly contribute to tail
response time, especially as queues grow inside network in-
terface controllers. Thus, transmission bandwidths and delays
must be considered for resource allocation and microservice
placement.

Traditional autoscaling approaches like AWS or Kubernetes
[14], [15] monitor and scale applications as single units,
which is insufficient for microservice-based systems with strict
performance guarantees. A more holistic view for performance
monitoring, prediction and elasticity is needed—one that
proactively considers microservice dependencies, workload
changes, and network infrastructure to prevent performance
degradation and ensure end-to-end QoS.

III. RELATED WORK

As mentioned above, calculating the end-to-end response
time of a microservice-based application is not straightfor-
ward. Each microservice exhibits distinct response time pat-
terns, and the connections between them can be quite complex.
Not only is the end-to-end response time of the request the

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

..... >
->
-

Paths for read-usertimeline requests

~ Paths for reachometimeline requests
<

read_user
_timeline

read_user
_timeline

User
Timeline

‘ read_user ’

_timeline

read_home
_timeline

i

Home
Timeline

Fig. 1. Different possible requests’ paths in the Social Network application.

result of multiple additions and maximum operations involving
the response time of each microservice, but some microser-
vices’ response times are also influenced by the performance
of neighboring microservices [9].

Therefore, a significant challenge arises: response time mea-
sures can only occur after setting a resource configuration to
the actual infrastructure. Real-time experimentation of various
alternatives is infeasible due to the potential impact on mi-
croservice performance when altering resources. Additionally,
the search space for possible combinations grows exponen-
tially when ranging from tens to hundreds of microservices
within an application. To address this issue, recent research
on the subject has focused on different alternatives to model
the problem in a way that provides fast predictions on the
performance of a given resource allocation. In this regard,
research can be classified into three main strategies: model-
based, simulation-based, and data-based.

The model-based approach involves developing a theoretical
model of the application’s behavior to analyze its performance.
Traditional queueing theory is not enough to model the
behavior of a microservice-based application with blocking
connections between microservices. Therefore, an extended
form of queueing called layered queueing is necessary. When
a given software component calls another component and
waits (blocked) for its reply, we have an example of layered
queueing. For this, current research uses the Layered Queueing
Network (LQN) model [13], [16]

The layered queueing model was introduced several years
ago to model the behavior of distributed systems and has
evolved over the years. LQN has become a standard for analyt-
ically modeling traditional distributed systems, with existing
solvers and simulators designed to compute solutions [16]. It
has also been applied to modeling the performance of cloud
applications. However, it has not been until recently that the
idea of using LQN to model microservice-based applications
has emerged.

In this regard, ATOM is proposed in [17], an autoscaling
controller for microservice-based applications that uses LQN
models to estimate performance. The proposed controller
works iteratively by the following steps: from monitoring
data, an LQN model of the application is obtained, an LQN

& find

(p——

B, read_posts g
s

find

=

Use[.ﬁ;neline Redis

User
Timeline
MongoDB

---~Post Storage
Memcached

Post Storage
MongoDB

Home

Timeline
Redis

analytical solver is used to obtain performance estimates from
the LQN model, and these estimates are used in a meta-
heuristic algorithm to find a scaling solution; finally, the
obtained solution is applied to the system. Regarding the
estimate, the proposal is evaluated for a single application,
and not much detail on the accuracy of the solver is provided.

A similar approach, which also takes advantage of LQN
modeling for resource scaling, is presented in [18]. In this
case, the LQN model is transformed to a fluid approxima-
tion, using a compact system of coupled ordinary differential
equations (ODEs). Then, the resource allocation problem is
formulated as a nonlinear optimization problem where the
ODEs of the fluid approximation of the LQN are used as
constraints. Finally, the optimization is solved with a series of
relaxations such as local optimization, smooth approximations
for linearization and differentiability, and transforming integer
variables into continuous ones. The evaluation is performed
for a single microservice-based application. The results of the
performance estimates show an error of less than 8% for the
estimate on the response time of microservices.

Despite the potential of modeling techniques, significant
limitations arise when addressing the elasticity demands in
microservices. Solvers often stumble because they rely on
assumptions like Poisson arrivals, which do not align with
the heavy-tail, autocorrelated nature of Internet traffic [19].

Alternatively, simulators [20] can model the performance of
microservice-based application deployments more accurately
for non-homogeneous traffic. However, running an appropriate
simulation demands a significant computational load, turning
into long run times. Moreover, the cost of running a simulation
scales exponentially with the number of simulated incoming
requests to be processed and the number of involved microser-
vices. Consequently, this limitation severely restricts its utility
when considering a real-time elasticity scenario where strict
time constraints apply.

In this context, data-driven approaches using Machine
Learning (ML) have recently been proposed. These approaches
sidestep these pitfalls by deriving models directly from real-
world data, capturing complex, non-linear dynamics, with
impressive precision.

In [10] a resource manager called Sinan is proposed,

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

which uses a Convolutional Neural Network (CNN) model
for detailed short-term performance prediction and a Boosted
Trees model that evaluates the long-term performance evolu-
tion. Sinan leverages a dual-model approach to achieve more
accurate resource allocation predictions and to better account
for system inertia when building up queues. By examining
near-future outcomes and system behavior over time, Sinan
dynamically adjusts per-tier resources online based on the ser-
vice’s runtime status and end-to-end quality of service (QoS)
targets. However, its main limitation is that CNN is highly
dependent on the graph of the application’s microservices, and
a different CNN is needed for each application.

Therefore, GNNs have recently become a go-to for
microservice-based applications, thanks to their affinity for
graph data structures and their possibility of being independent
of the input graph structure. Moreover, by representing the ap-
plication as a graph of microservices, GNN models can better
capture the complex interactions, which can help in detecting
back-pressure and cascading effects, since they understand the
graph’s dependencies [21].

In this sense, GRAF, as referenced in [9], employs a GNN
to estimate the end-to-end tail response time of an application
using the execution states of the microservices. Initially, it
examines the workloads of the running application, which are
combined with the CPU quota of the microservices to depict
the node state of the graph of microservices. The input graph is
constructed from the previous analysis and consists of a Direct
Acyclic Graph (DAG) representing the connections between
microservices. Subsequently, GRAF applies a gradient descent
algorithm to identify the least resource configuration that
meets the tail response time Service Level Objective (SLO). In
the loss function, the fully trained GNN model is used to detect
potential violations of the response time SLO. Regarding
the estimated performance of the GNN, the authors report
percentage errors between 20% and 30% depending on the
response time ranges.

PERT-GNN follows a similar approach [11], a generic
framework based on GNNs that predicts the end-to-end re-
sponse time for microservice-based applications. It defines
the interactions or dependencies of constituent microservices,
which are observed from previous execution traces of the ap-
plication, using the Program Evaluation and Review Technique
(PERT). A GNN is built based on the PERT Graphs gener-
ated, and the task of response time prediction is formulated
as a supervised graph regression problem using the graph
transformer method. This approach is similar to the one used
by GRATF, but it incorporates PERT Graphs and the graph
transformer method. The authors show that using a PERT
Graph improves response time predictions as more insight into
the temporal dynamics of microservices is obtained. In this
case, the prediction approach is evaluated for two different
applications, obtaining a percentage error of about 12% with
an absolute error of 1.2ms to 1.6ms.

Graph-PHPA, as referenced in [12], is another machine
learning-based approach that employs a two-stage prediction
method. This method utilizes both Long Short-term Memory
(LSTM) and a GNN. The LSTM is used to predict the
workload, while the GNN is used to model the relationship

between the workload and the resource consumption of dif-
ferent microservices within the network. However, it should
be noted that there is not much information available on how
the graph is constructed using this approach. In this case, the
node state is solely based on the resource consumption of each
microservice. This approach differs from the previous ones as
it combines LSTM and GNN and focuses only on resource
consumption for the node state.

Our approach diverges from previous works on GNNs by
aiming not at developing a model for a single application but
at constructing a generalized model capable of predicting the
performance of any microservice-based application. By inte-
grating LQN modeling and considering microservice features
such as the processing delay of requests, we leverage the
intrinsic interactions among microservices to achieve a general
model. Moreover, our model explicitly incorporates network
latency between microservices as a key factor. By supporting
different placement strategies across the computing continuum,
it allows microservices to be deployed at any point within this
infrastructure. This flexibility adds complexity to the problem,
as the varying network delays between microservices become
an essential consideration in the model’s predictions.

IV. LQN-BASED GRAPH MODEL

As stated in Section II, predicting the end-to-end response
time of requests for microservice-based applications is a
challenging matter. Therefore, it is critical to design a model
that can replicate the microservices’ behavior and interactions.
In this regard, previous works have proposed different graph
models; the most used ones are Call Graphs, these are Directed
Acyclic Graphs (DAGs) where the nodes stand for microser-
vices and the edges stand for the communication between
them.

However, the Call Graph approach falls short of modeling
all the complexities of microservice-based applications. As
stated in [11], the main limitations of a Call Graph are:

o Lack of distinction between different processing paths:
a call graph typically represents the entire application’s
call structure without distinguishing between the possible
distinct processing paths followed by different requests.

« No representation of the internal microservice behavior:
a call graph only captures the interactions between mi-
croservices without providing details about the internal
stages or processing steps within each microservice.

« Inability to capture temporal dynamics: when a microser-
vice has two or more outgoing links to other microser-
vices, a call graph does not provide information about
the order in which those subsequent processing requests
are carried out, which can be essential for understanding
the system performance and its behavior.

Hence, we propose building a graph model based on the
Layered Queueing Network (LQN) technique. This technique
allows us to represent not only the relationships between
microservices, but also the different possible paths traversed
by any request within the graph, as well as the behavior and
performance of the involved microservices.

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

, Entry E1 ’

[ed 1]
Layer 1
Task T1 {tm 1} <rf 1>
Layer 2
Task T2 {tm 2} <rf 2>
Layer 3

Fig. 2. LQN model example.

A. Layered Queueing Networks

First, let us briefly introduce the Layered Queueing Net-
works (LQNs) modeling technique. By extending traditional
queueing networks, LQNs incorporate various layers of re-
sources and services that interact with one another. Each layer
contains different entities, which may represent a software
module or a hardware resource, making requests to entities
in lower layers. This method is particularly effective for
systems with nested or hierarchical service requests, such
as distributed systems or microservice-based applications. It
allows performance metrics such as response time, throughput,
and resource utilization to be obtained.

Within an LQN, the entities representing software modules
are referred to as tasks, which possess queues and provide
different types of services known as entries. If necessary, the
behavior of each type of service can be modeled through ac-
tivities. Figure 2 shows an example of an application modeled
by an LQN. In LQN notation, a task is represented by a
parallelogram, which encompasses additional parallelograms
for its entries and rectangles for its activities. The replication
factor, shown in angular brackets, indicates how many iden-
tical replicas are considered for each task. Task multiplicity,
displayed in curly brackets, refers to the number of software
threads available per task replica. Hardware resources are
modeled by processors, illustrated as circles, and each task
must be linked to one. The processor symbolizes the hardware
computational units responsible for executing each task thread.
Processor multiplicity, also shown in angular brackets, denotes
the processor’s level of parallelism.

Each entry has an execution demand, indicated in square
brackets, representing the mean time it takes for that entry
to process a request (we also call it processing delay in this
work). However, if necessary, an entry behavior can also be

modeled by a graph of activities (as in Task 2 of Figure
2), each of them with its own execution demand. Activities
represent the finest level of detail in the model and are
interconnected in a directed graph to denote the execution
order. The model allows the requests to diverge into several
sub-paths that eventually converge. The fork can be an AND
(&), implying that all activities following the divergent point
can execute concurrently, or an OR (+), which selects one of
the sub-paths based on a given probability p.

Entries and activities are connected to other lower-layer
entries through directed links, symbolizing service requests
to lower layers. A request from an entry or an activity to
another entry may yield a response to the requester; in this
case, we consider this a synchronous request. The service time
(or response time) for an entry to a request is the total time a
single request holds it. This encompasses its own processing
delay and any periods where it is blocked, waiting for its
processor or for nested lower-level services to finish their
tasks. This concept is the main difference from traditional
queuing networks and is essential for modeling microservice-
based applications.

B. LON-Based Microservices Graph Model

The previously described LQN model represents an appli-
cation execution very similar to a microservice-based architec-
ture where the tasks correspond to the different microservices
of the application. However, it is not a graph that can be
directly considered an input to a GNN. Therefore, we propose
a new graph representation for a microservice-based architec-
ture by combining the LQN ideas with the traditional DAG
representation of microservice-based applications.

In this regard, two main characteristics of LQNs need to
be adapted. First, in LQNs, tasks include entries, which also
include activities. Then, we propose a representation where
each entity of the LQN model (tasks, entries, and activities)
is a node of a graph and where the entries or activities of a
task are connected to the corresponding task through a link.
Given that in our scenario, we do not envision sharing com-
puting resources between microservices (each microservice is
allocated its own resources), we do not add a representation
for processors (as in LQN) to our model. Instead, information
regarding the resources allocated to a task is considered an
attribute of the task node.

Secondly, the activities” graph allows forks, which implies
that a request can follow different paths depending on the
probability of the OR forks or even parallel paths in the case
of an AND. We propose to model each path as a node of
the graph that is connected to all the activities it traverses.
Hence, forks in LQN would generate two separate paths in
our model. This way, we have a detailed representation of a
request’s possible paths and its corresponding performances.
Moreover, we substitute the modeling of the entries with the
modeling of the paths and the activities that constitute them.

Following the LQN model, every activity processes requests
and consumes time on the processors assigned to the re-
spective microservice. An activity can also send a request
to another activity of its own microservice or to a different

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

microservice. Then, activities are also connected through links,
following this path. In our model, we are always considering
synchronous requests, which means that the execution of the
requester waits while the requestee processes the request and
generates the corresponding reply. However, we differentiate
blocking and non-blocking calls, which determine if the thread
of execution is blocked while waiting for the response or if the
call is implemented in a way that does not block the execution.

Given that microservices can be deployed and distributed

among possibly distant computing nodes in the computing
continuum, we must also model the underlying network delay.
In our modeling, the network delay between two microser-
vices is modeled as a dummy task, which does not consume
resources but has an activity with a processing delay equal to
the network delay.

The rationale of the proposed representation is the follow-

ing:

o The state of an activity (e.g., response time, throughput)
depends on the state of the microservice it belongs to
(e.g., assigned resources and resource utilization), on
the state of the activities that send requests to it (e.g.,
throughput), on the state of the activities which it sends
a request to (e.g., response time) and on all the paths that
traverse the activity (e.g., amount of requests).

o The state of a microservice (e.g., load) depends on the
state of all its activities (e.g., load, throughput).

o The state of a path (e.g., response time) depends on the
state (e.g., response time, load) of all the activities it
traverses.

In summary, our model of an application consists of a graph
with three types of nodes: task, activity, and path. The task
nodes represent the microservices and are connected to activity
nodes. An activity node represents the minimum computation
unit and is connected to other activities to form a sequence of
activities a request can traverse. Additionally, all the activities
of a request path are connected to a path node, which gathers
information about the request path.

In Figure 3, we show a graph example for an application
with four microservices (red nodes), each of them with a
different amount of activities (green nodes). There are also
two paths (light and dark blue nodes): P1, which is a sequence
of three activities from T1 and T2, and P2, which is a
more extended sequence that includes all the activities of the
application.

C. Graph Construction and Processing-Delay Estimation

Deriving the complete LQN graph previously proposed
involves two main tasks: (1) constructing the LQN graph,
which consists of tasks, activities, and their connections, and
(2) estimating the processing delay metrics for each task and
activity.

For the first task, the LQN graph can be constructed
using information provided by the application owner, such
as a UML diagram. Some existing works propose automated
approaches to derive LQNs from UML descriptions [22], [23],
which could further facilitate this process. Additionally, it is
necessary to extract request paths from the original application,

T1
™
A1T1 A2T1 A3T1 T3
ALT2
A1-T3 A2-T3 A3-T3
P2 T4
A1-T4 A2-T4

Fig. 3. Example for the proposed LQN-based graph model.

determine the load for each path, and gather information
on microservice activities, such as request processing delays.
In real-world scenarios, application performance monitoring
tools [24] can be used to derive communication patterns,
performance characteristics, and relevant metrics.

For the second task, estimating processing delays can
be achieved by analyzing response time measurements of
microservices and applying statistical estimation techniques.
One possible approach is the maximum likelihood estima-
tion method proposed in [25], which has demonstrated high
accuracy in previous evaluations. This allows for a reliable
assessment of processing delays without requiring extensive
manual intervention.

However, in our study, this estimation process is not re-
quired as we rely solely on simulations. Since we have full
control over the simulated environment, the processing delays
are predefined within the application configuration. Therefore,
while we highlight an approach that could be used in practical
deployments, our experiments do not depend on this estimation
technique.

V. LQ-GNN: MODEL OVERVIEW AND APPLICATIONS

The graph model proposed above defines a circular depen-
dency between microservices, activities, and paths. To solve
the circular dependencies, and inspired by the work from
[26], we implement a Graph Neural Network architecture 1
consisting of a three-stage message passing algorithm that
combines the states of tasks, activities, and paths and updates
them iteratively. Finally, it combines these states to estimate
the application’s response time. We introduce this novel inte-
gration of Layered Queueing Networks (LQN) and GNNs as
LQ-GNN.

A. LQ-GNN Design

In Algorithm 1, we present the proposed message-passing
architecture in detail. First, hidden states hy, hg, and h,
are initialized using the initial features xj, x,, and x, into

'A comprehensive description of how GNNs work can be found in [27].

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

fixed-size vectors representing feature embeddings. The ini-
tial features of tasks x; are defined as a n-element vector
that characterizes the microservice. In our case, this vector
includes the number of threads configured in the microservice,
the number of processor cores assigned, and the number of
replicas deployed. We set the initial features of activities z,
with the processing delay of a request and with a boolean
parameter, which indicates if the activity calls are blocking or
non-blocking. Finally, the initial feature of paths x, consists
of the load on that path (as the average requests per second).

Once all hidden states are initialized, the message-passing
phase starts. This phase is executed for 7' iterations, where
T is a configurable parameter of the model. Each message-
passing iteration is divided into three stages, representing the
message exchanges and updates of the hidden states of tasks,
activities, and paths.

In the first stage (from lines 11 to 17), the hidden state
of each path is updated. For this, each activity connected to
a path generates a message from its hidden state. Note that
the only neighbors of a path are its activities. Then, all these
messages are aggregated in the path in an ordered vector.
Finally, the hidden state of the path is updated using the
previous aggregation as input to a Gate Recurrent Unit (GRU)
network.

For the second stage, a similar approach is followed to
update the state of the activities. In this case, we have three
different types of neighbors for each activity in the graph: the
task to which the activity belongs, the paths that traverse that
activity, and the predecessor and successor activities. Each of
these types of neighbors generates a message to the activity.
The task (line 19) and the paths (lines 20 to 22) send their
hidden states directly. For the neighbor activities (lines 23 to
25), the messages are generated using a neural network that
receives as entry the hidden state of source and destination
activities and the direction of the connection (if the source
is a successor or predecessor). Then, all these three types of
messages (Mg i, Ma k, Mq,k) are aggregated using an edge-
attention mechanism (line 26).

In the third stage, the state of each task is updated by
combining the messages from all the activities that belong to
that task. For this, each activity connected to the task generates
a message from its hidden state. Then, all these messages are
aggregated in an ordered vector, and the hidden state of the
task is updated using the previous aggregation as input to a
GRU network.

Finally, the updated hidden states are used to predict the
application’s response time. For this, we propose and evaluate
two different predictions:

« the response time of each task (line 37)

« the response time of the entire application (line 39).

The functions R represent a readout function consisting of
a neural network. For the prediction of tasks, this function
is individually applied to all tasks’ hidden states. For the
application’s response time, a sum pooling function is used
to group the states of the paths, and then the readout function
is applied to obtain one prediction.

Figure 4 shows the message-passing proposal over an
example graph. In the figure, the yellow arrows represent

Algorithm 1 Proposed GNN architecture.
1: for each k € T'asks do

2: h2 — Tk > [#threads, #cores, #replicas]
3: end for

4: for each a € Activities do

50 hY 1, > [proc delay, blocking]
6: end for

7: for each p € Paths do

8: hg — Ty > [load]
9: end for

10: for t=0 to T-1 do

11 for each p € Paths do

12: for each a € Activities(p) do

13: my, . < hf,

14: end for

15: Mlt, +— [mgl, ...,m;np]

16: ALt <« GRU(hL, M)

17: end for

18: for each a € Activities do

19: mp, . < by, | k € Tasks(a)
20: for each p € Paths(a) do
21: mh,, < hl,

22: end for

23: for each o’ € Activities(a) do
24: m}, o < DNN(hi, bl dira)
25: end for
26: Mg Yien(a) VM he) * me; | N(a) =

Tasks(a) U Paths(a) U Activities(a)

27: Rt <« GRU (AL, M})
28: end for
29: for each k € Tasks do

30: for each a € Activities(k) do

31 my, . < hl,

32: end for

33: M = [mf, 15 eymy .,]

34: hit! <« GRU(hS, M})

35: end for

36: end for

37: for each k € Tasks do
38 gk Re(hy)

39: end for

40: Jo = Ra(X e paths hl)

messages received by activity A1-T2 from paths, tasks, and
other activities; the green arrows represent messages received
by path P1 from the corresponding activities, and the red arrow
represent messages from activities to task T2.

B. LO-GNN for Resource Allocation and Elasticity

LQ-GNN is designed to predict the response time of
microservice-based applications. By accurately forecasting
how different deployment configurations influence the ap-
plication’s performance, LQ-GNN becomes a key tool for
an efficient implementation of the resource allocation and
elasticity mechanisms. An illustrative example of the use of
LQ-GNN, which we are currently developing, would come

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

T1

A2-T1 A3-T1

} Al-T1

Al1-T3

Fig. 4. Example graph with message-passing proposal.

from steering the resource allocation mechanism by con-
catenating a genetic algorithm (GA) and an optimization
heuristic. The use of GAs is specially suitable to explore
a wide search space of candidate deployment locations and
resource assignments for any application. The goal is to meet
the response time requirements while adhering to constraints
such as cost or resource availability when several applications
must be deployed simultaneously. The GA receives an LQN
graph for a given application, the expected traffic demand, and
the required response time. Starting with strategic candidate
solutions, where a solution represents a specific deployment of
microservices in the continuum (including how many instances
of each microservice) and a given allocation of resources (e.g.,
CPU cores), the GA runs the LQ-GNN approach to estimate
the response time of each proposed candidate solution. This
way, the GA will be able to arrange an initial population of
many different valid solutions, and in successive generations,
the same GA will converge to a subset of optimal or near-
optimal solutions, all meeting the required response time.
This process is repeated for each of the applications to be
deployed. Once optimal allocations are identified for each
individual application, a higher-level heuristic will take those
candidate solutions and select one of them for each application
to coordinate the deployment of all applications together. This
heuristic will balance the competing demands of different
microservices and the available resources, ensuring the best
possible placement throughout the entire infrastructure.

VI. EVALUATION

In this section, we present the LQ-GNN assessment on
predicting the response time of microservice-based applica-
tions. First, we provide a description of the methodology and
data generation for training, as well as an overview of our
experimental configuration. In the following, we conduct an
evaluation of the performance of LQ-GNN and compare it
against an LQN analytical solver.

A. Methodology

We evaluated the effectiveness of our proposed LQ-GNN
model in predicting the response time of both individual
microservices and the entire application. To achieve this, we

tested the model on datasets generated from three different
microservice-based applications: a 4-tier web application [20]
(4-tier) and two variations of a common Social Network
application [8] (SN-1 and SN-2). Furthermore, we conducted
experiments using the Mix case, where the model was trained
and tested with a combination of the three datasets to assess
its generalizability.

We also considered an infrastructure made up of a set of
computing servers distributed across the edge, fog, and cloud.
In this setup, network latency varies depending on the distance
between the end-user and the servers, as well as between
servers located at different tiers of the continuum. Although
our model can accommodate any network latency between
pairs of microservices, we chose only three tiers for clarity
and simplicity in the evaluation.

The datasets used for training and testing were obtained
by implementing and executing the applications in an ex-
tended version of the ugqSim Simulator [20]. ©qSim provides
comprehensive intra- and inter-microservice models, enabling
accurate emulation of complex multi-tier applications. Our
extended simulator? introduces additional capabilities, such
as defining network delays between microservices (to model
cloud-continuum placements), deploying multiple instances of
microservices, and extracting detailed performance metrics for
each microservice.

Each one of the three testing graphs contained a different
number of microservices, connections, and paths. Even more,
each microservice has its own set of activities, each of them
with its processing delay and specific characteristics (e.g.,
blocking call behavior). Then, for each graph, a set of instances
was generated by varying the following setup characteristics:

« number of threads assigned to each microservice (1 to 8),

o number of cores assigned to each microservice (1 to 8),

o placement of the microservices on edge, fog or cloud
servers (with the corresponding variation on the network
latency between microservices),

« request load (requests per second) of the application (200
to 20,000 depending on the graph).

For each graph, we conducted between 200K and 250K
simulations by varying the features mentioned above. The
total simulation time required to generate the dataset varies
significantly by graph, ranging from 3,000 hours for the 4tier
graph to 50,000 hours for the SN-1 graph. However, since the
simulations are independent, they can be parallelized. In our
case, we reduced the wall time for the SN-1 graph to just 300
hours through parallel execution.

The simulation results consisted of four different statistics
of the application performance:

o Average end-to-end response time. This is the average

response time of the application.

o 95th percentile end-to-end response time. This is the 95th
percentile response time (i.e., tail response time) of the
application.

o Average response time per microservice. This is the
average response time of an individual microservice of
the application.

Zhttps://github.com/mrichart/ugsim-power-management-beta

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

e 95th percentile response time per microservice. This
is the 95th percentile response time of an individual
application microservice.

From all simulation results, we kept only those with a
request rejection rate below 2%. This approach produced a
total amount of approximately 100K samples for each graph,
from which we took 80% for training, 10% for validation,
and the remaining 10% for testing. All experiments were
conducted on a server with an Intel Xeon Gold 6138 40-Core
Processor CPU with a 40GB RAM running Linux CentOS 7.

In Tables I and II we present the main statistics for the
response time from the training dataset. This will be helpful
when evaluating the performance of predictions in the next
sections.

TABLE 1
APPLICATIONS RESPONSE TIME STATISTICS FROM THE TRAINING
DATASET.

Average response time (ms) 95th percentile response time (ms)

Graph Min 25th Median 75th Max Min 25th Median 75th Max
4-tier 0211 0.337 0.566 1.17 63.8 0.833 0.958 132 6.12 728
SN-1 1.09 196 340 5.66 121 3.60 895 140 21.1 930
SN-2 112 204 371 596 150 3.62 9.07 149 218 936
Mix 0211 1.16 233 497 150 0.834 457 10.8 193 936
TABLE I
MICROSERVICES RESPONSE TIME STATISTICS FROM THE TRAINING
DATASET.
Average response time (ms) 95th percentile response time (ms)
Graph Min 25th Median 75th Max Min 25th Median 75th Max
4-tier 0.00190 0.0131 0.450 4.51 490 0.00644 0.0347 1.293 14.5 2612
SN-1 0.0116 0.201 1.88 4.90 121 0.0297 0.602 10.0 15.15 930
SN-2 0.0117 0.166 1.65 4.70 150 0.0296 0.491 878 150 936
Mix 0.00190 0.200 1.55 4.80 490 0.00644 0.572 830 150 2612

B. LQ-GNN Implementation and Training

The proposed GNN model was implemented using the
IGNNITION Framework [28], which allows a fast prototyping
of the solution. The implemented model is available online?.

The main implementation setup characteristics are:

o The dimension of all entities’ hidden states is 8.

e The number of iterations (7") is set to 8.

o The neural network for generating the messages between
activities is a two-layer, fully connected neural network
with 32 and 8 units and ReLU activation.

o The readout neural network is implemented as a 3-layer
fully connected neural network with ReLU activation
function and 32 units for the hidden layers, and a linear
one for the output layer.

For each of the three graphs, we train the GNN model,
thus getting a different trained GNN for each graph. We use
the training and validation dataset of the corresponding graph
for training, while preserving the test dataset for evaluating
the performance, using instances never seen during training.

3https://github.com/mrichart/lg-gnn

2.00 A —— Training Loss

Validation Loss
1.75 1
1.50
1.25 1

@

& 1.004
0.75 4
0.50 4 \

\/‘

\/\ o~

W

0.25 4

N/ SV,

0.00

0 10 20 30 40 50
Epoch

Fig. 5. Evolution of loss during training for the 4-tier graph.

In addition, we also trained a fourth GNN model using
randomly selected instances from the three previous graphs.
The rationale is to show the generalization capability of the
approach; the trained GNN is not tied to a particular graph.

We set the Mean Squared Error as the loss function for
training, and we use an Adam optimizer with an initial learning
rate of 0.001. We train each model over 50 epochs. Each epoch
has between 1,000 and 1,600 steps, depending on the size of
the training dataset. For graphs 4-tier and SN-1 we set a batch
size of 65, while for graph SN-2 and the Mix case we set the
batch size to 128. All these values were empirically obtained
s0 as to maximize prediction performance.

The average training time for the 4-tier graph was of 60
hours, for the SN-1 graph of 190 hours, for the SN-2 graph
of 45 hours, and for the Mix case of 280 hours. In Figure 5,
we show the evolution of the training and validation losses for
the 4-tier graph. As we can see, it converges to a satisfactory
low value in the 50 epochs used for training.

C. End-to-end Response Time

In this section, we show the performance of our proposed
LQ-GNN model on predicting the end-to-end response time
of the applications under evaluation.

We computed the error of the LQ-GNN predictions with re-
spect to the results of the ;1qSim simulator using four different
statistical metrics: Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), Mean Square Logarithmic Error
(MSLE) and Root Mean Squared Error (RMSE). Our objective
with MAPE and MSLE is to show the accuracy of our model.
While MAPE is easily understood as a percentage, MSLE
shows more stability when dealing with data with a wide
range of values, such as the response times of individual
microservices. On the other hand, MAE and RMSE show
a measure of the prediction error in time units, which is
very helpful to understand the expected performance of the
proposed predictive model. While MAE is easier to interpret,
we also include RMSE as it has a higher sensitivity to large
error values.

In Tables III and IV we present the error results for
predicting the average and the 95th percentile of the response

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

time of the entire application compared to the results obtained
with the simulator.

Regarding the average response time, the prediction accu-
racy of LQ-GNN is highly reliable when trained and tested
on an individual application, achieving a MAPE between 5%
and 7%. However, when using the generalized model (where
the GNN is trained on a combination of the three graphs) the
accuracy decreases, resulting in a MAPE of approximately
10%. For the other two statistical metrics, the MAE ranges
between 0.2ms and 0.4ms, while the RMSE falls between
1.6ms and 2.1ms across all cases.

TABLE III
AVERAGE RESPONSE TIME PREDICTION PERFORMANCE OF LQ-GNN.

Graph MAPE MAE MSLE RMSE
4-tier 6.9% 0.239 0.0230 1.633
SN-1 4.6% 0.388 0.0118 2.191
SN-2 4.7% 0.383 0.0090 2.046
Mix 9.7% 0.342 0.0459 2.102

To better understand the significance of the obtained accu-
racy values, it is important to consider the objective of these
predictions. As described in the introductory section, the goal
of our LQ-GNN predictions is to assist an elasticity controller
in making informed decisions regarding the placement and
resource allocation of an application. Given that response
times in microservice-based applications typically range from
several milliseconds to hundreds of milliseconds, a mean
absolute error of 0.4 ms represents only a small fraction of
the total response time. This level of error is well within
an acceptable range for practical decision-making, as it does
not significantly impact the controller’s ability to optimize
resource allocation effectively.

For the tail response time (95th percentile), the MAPE
is slightly higher, ranging from 7% to 10%, with an MAE
of around 2ms. However, considering that the response time
values in this case are significantly higher and more varied (see
Table I), these results are still very promising. Once again,
for the purpose of considering such predictions, the errors
obtained are satisfactory.

TABLE IV
95TH PERCENTILE RESPONSE TIME PREDICTION PERFORMANCE OF

LQ-GNN.

Graph MAPE MAE MSLE RMSE

4-tier 7.4% 1.747 0.0210 12.533

SN-1 6.9% 2539 0.0374 15.050

SN-2 73% 2.171 0.0213 13.838

Mix 9.6% 2.081 0.0290 15.081

D. Microservice Response Time

We also evaluated the performance of LQ-GNN on predict-
ing the response time of individual microservices of the ap-
plication. Having an individual prediction for each constituent
microservice would allow an elasticity controller to have a
more detailed diagnosis of the performance of the application.

In particular, this would help finding microservices which are
generating high response times and decide, for example, to
increase their resources or change their placement.

As in the previous section, we report the error of LQ-GNN
prediction with respect to the results of the ;qSim simulator
using the same error metrics. In Tables V and VI, the average
response time and the results of the 95th percentile response
time are presented. To ease visualization, we calculated the
error for each microservice of the application and averaged
by the total number of microservices.

TABLE V
INDIVIDUAL MICROSERVICE AVERAGE RESPONSE TIME PREDICTION
PERFORMANCE OF LQ-GNN.

Graph MAPE MAE MSLE RMSE
4-tier 4.7% 0422 0.0126 5.344
SN-1 3.2% 0.185 0.0079 1.459
SN-2 6.5% 0.301 0.0199 1.569
Mix 9.5% 0438 0.0114 5.546

Similarly to the case of the end-to-end response time, the
results are highly accurate. For the average response time of
the three graphs, the MAPE ranges between 3% and 6.5%,
with an MAE between 0.2ms and 0.4ms. For the case of the
4-tier graph, we can observe a higher RMSE compared to the
others. This is because, in this scenario, the variability of the
response time among the different microservices is higher (see
Table IT) and includes a considerable amount of outliers. As
in previous results, the more general model has a higher error
with a MAPE of 9.5%, but still maintaining a good prediction
accuracy in the other metrics.

TABLE VI
INDIVIDUAL MICROSERVICE 95TH PERCENTILE RESPONSE TIME
PREDICTION PERFORMANCE OF LQ-GNN.

Graph MAPE MAE MSLE RMSE
4-tier 4.5% 1.492 0.0122 21.011
SN-1 5.6% 1.313 0.0215 9.825
SN-2 7.4% 1.493 0.0271 9.800
Mix 7.3% 2281 0.0329 27.553

For the prediction of tail response time (95th percentile) of
a microservice, we have very similar performance results. In
this case, we obtain a MAPE between 4.5% and 7.5% and a
MAE of around 1.5ms. Again, given the broader distribution
of different response times in the dataset of the 4-tier graph,
the RMSE for this case (and for the Mix case) is much higher.

E. LON Analytical Solver

To compare our results against other potential prediction
approaches, we have used an LQN analytical solver. The
LQN solver [13] consists of an iterative algorithm based on
the Linearizer algorithm [29]. The Linearizer is a heuristic
algorithm to obtain approximate average statistics from basic
queueing-network. Briefly explained, the LQN solver works by
applying the Linearizer algorithm to each layer of the LQN
graph in an iterative manner until a convergence threshold is
reached. Therefore, it is important to note that the LQN solver

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

does not provide an exact solution to the problem because of
its coarse-grain approach.

For the LQN solver, we have used the same datasets and
performed the same tests for each graph. As we did with LQ-
GNN, we compare the response times found by the solver
with the results obtained by the ©qSim Simulator. The results
obtained were not very promising, with an MAPE between
50% and 60%, depending on the graph, for both the end-to-end
response time and the microservices response time. Therefore,
we discarded providing a more detailed comparison.

Moreover, to validate the model implemented for the LQN
solver (note that the model needs to be described in a specific
XML Schema *), we tested the same specified LQN model by
an LQN simulator [16]. For the LQN simulator, it was not
possible to run the entire test dataset since each simulation
takes between 60 and 120 minutes to complete and it would
have been necessary to carry out up to 250K simulations.
However, we randomly selected 200 instances from the 4-
tier graph and ran them in the LQN simulator. Again, we
compare the results of the LQN Simulator with those of the
©qSim Simulator. We obtained an average MAPE of 15%,
suggesting that the model implemented is accurate and that is
the LQN solver that does not produce good results for our test
cases.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have analyzed the challenges and so-
lutions involving the placement and resource allocation of
microservice-based applications in a computing continuum
working scenario. By focusing on providing elasticity for the
deployment of applications onto a computing continuum, we
emphasize the requirement to have a performance modeling
tool of microservice-based applications.

In this regard, we propose LQ-GNN, a novel strategy
to predict the response time of microservice-based applica-
tions while considering different microservice locations and
resource assignments. We demonstrated that the LQ-GNN
model, leveraging Layered Queueing Networks and Graph
Neural Networks, provides a robust framework for predict-
ing applications performance. This model offers significant
improvements over existing approaches, making it a feasible
tool for real-time resource allocation and elasticity control.
The results showed that the model assures acceptable error
margins even when generalized across multiple applications,
ensuring its practical applicability in diverse scenarios.

Moreover, we have highlighted the limitations of current
approaches, such as the computational cost of simulations, the
unrealistic assumptions of analytical solvers, the generalization
shortage of similar ML solutions, and how our approach ad-
dresses those shortcomings. In summary, our work contributes
to providing a valuable tool in the decision-making of resource
allocation approaches allowing for more accurate and timely
solutions.

Future research will further refine this model, exploring
its application in increasingly complex and heterogeneous
cloud computing environments as well as for more intricate

“http://www.sce.carleton.ca/rads/lqns/Iqn-documentation/schema/

microservice-based applications. We also plan to extend our
testing with real-world data, aiming to validate and refine our
model’s performance in practical environments. This step will
allow us to better understand the challenges and opportunities
presented by real-world applications and improve the robust-
ness and versatility of the model.

ACKNOWLEDGMENTS

This work has been partially funded by the project
“UNICO-5G I+D-OPTIMAIX-TSI-063000-2021-34”, by the
Beatriu de Pinés Programme of the Ministry of Research
and Universities of the Government of Catalonia under
grant 2022-BP-00099 and also supported by the Agencia
Estatal de Investigacion of Ministerio de Ciencia e In-
novacién of Spain under project PID2022-1373290B-C41
/MCIN/AEI/10.13039/501100011033.

REFERENCES

[11 R. M. Swoyer, Steve, “Cloud Adoption in 2020,” May 2020. [Online].
Available: https://www.oreilly.com/radar/cloud-adoption-in-2020/

[2] D. Kimovski, R. Mathd, J. Hammer, N. Mehran, H. Hellwagner, and
R. Prodan, “Cloud, Fog, or Edge: Where to Compute?” IEEE Internet
Computing, vol. 25, no. 4, pp. 30-36, Jul. 2021, conference Name: IEEE
Internet Computing.

[3] M. L. Swoyer, Steve, “Microservices Adoption in 2020,” Jul.
2020. [Online]. Available: https://www.oreilly.com/radar/microservices-
adoption-in-2020/

[4] O. Zimmermann, “Microservices tenets,” Computer Science - Research
and Development, vol. 32, no. 3, pp. 301-310, Jul. 2017. [Online].
Available: https://doi.org/10.1007/s00450-016-0337-0

[5] J. Baliosian, L. M. Contreras, P. Martinez-Julia, and J. Serrat, “An
Efficient Algorithm for Fast Service Edge Selection in Cloud-Based
Telco Networks,” IEEE Communications Magazine, vol. 59, no. 10, pp.
34-40, Oct. 2021, conference Name: IEEE Communications Magazine.
[Online]. Available: https://ieeexplore.ieee.org/document/9627830

[6] J. Chapel, “Wasted Cloud Spend to Exceed $17.6 Billion in 2020,
Fueled by Cloud Computing Growth,” Mar. 2020. [Online]. Avail-
able: https://jaychapel.medium.com/wasted-cloud-spend-to-exceed- 17-
6-billion-in-2020-fueled-by-cloud-computing- growth-7c8f81d5c616

[71 M. H. Fourati, S. Marzouk, and M. Jmaiel, “Cloud Elasticity of
Microservices-based Applications: A Survey,” In Review, preprint, Feb.
2024. [Online]. Available: https://www.researchsquare.com/article/rs-
3925329/v1

[81 Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi,
Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou, “An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud & Edge Systems,”
in Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems. Providence RI USA: ACM, Apr. 2019, pp. 3-18. [Online].
Available: https://dl.acm.org/doi/10.1145/3297858.3304013

[9] J. Park, B. Choi, C. Lee, and D. Han, “GRAF: a graph neural network

based proactive resource allocation framework for SLO-oriented

microservices,” in Proceedings of the 17th International Conference
on emerging Networking EXperiments and Technologies. Virtual

Event Germany: ACM, Dec. 2021, pp. 154-167. [Online]. Available:

https://dl.acm.org/doi/10.1145/3485983.3494866

Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: ML-

based and QoS-aware resource management for cloud microservices,”

in Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating

Systems. Virtual USA: ACM, Apr. 2021, pp. 167-181. [Online].

Available: https://dl.acm.org/doi/10.1145/3445814.3446693

D. S. H. Tam, Y. Liu, H. Xu, S. Xie, and W. C. Lau, “PERT-GNN:

Latency Prediction for Microservice-based Cloud-Native Applications

via Graph Neural Networks,” in Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining. Long Beach

CA USA: ACM, Aug. 2023, pp. 2155-2165. [Online]. Available:

https://dl.acm.org/doi/10.1145/3580305.3599465

[10]

(11]

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27

(28]

[29]

H. X. Nguyen, S. Zhu, and M. Liu, “Graph-PHPA: Graph-
based Proactive Horizontal Pod Autoscaling for Microservices using
LSTM-GNN,” Sep. 2022, arXiv:2209.02551 [cs]. [Online]. Available:
http://arxiv.org/abs/2209.02551

G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi,
“Enhanced Modeling and Solution of Layered Queueing Networks,”
IEEE Transactions on Software Engineering, vol. 35, no. 2, pp.
148-161, Mar. 2009. [Online]. Available: http://ieeexplore.ieee.org/
document/4620121/

A. Amazon, “Application Scaling - AWS Auto Scaling - AWS,” 2024.
[Online]. Available: https://aws.amazon.com/autoscaling/?nc1=h_ls
Kubernetes, “Horizontal Pod Autoscaling,” 2024, section: docs.
[Online]. Available: https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

G. Franks, P. Maly, M. Woodside, D. C. Petriu, M. Mroz, and A. Hub-
bard, “Layered Queueing Network Solver and Simulator User Manual,”
Department of Systems and Computer Engineering, Carleton University,
Tech. Rep., 2022.

A. U. Gias, G. Casale, and M. Woodside, “ATOM: Model-Driven
Autoscaling for Microservices,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). Dallas,
TX, USA: IEEE, Jul. 2019, pp. 1994-2004. [Online]. Available:
https://ieeexplore.ieee.org/document/8884900/

E. Incerto, R. Pizziol, and M. Tribastone, “pOpt: An Efficient
Optimal Autoscaler for Microservice Applications,” in 2023 IEEE
International Conference on Autonomic Computing and Self-Organizing
Systems (ACSOS), Sep. 2023, pp. 67-76. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/1033604 1

A. Arfeen, K. Pawlikowski, D. McNickle, and A. Willig, “The role
of the Weibull distribution in modelling traffic in Internet access
and backbone core networks,” Journal of Network and Computer
Applications, vol. 141, pp. 1-22, Sep. 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804519301547
Y. Zhang, Y. Gan, and C. Delimitrou, “uqSim: Scalable and Validated
Simulation of Cloud Microservices,” Nov. 2019, arXiv:1911.02122 [cs].
[Online]. Available: http://arxiv.org/abs/1911.02122

H. X. Nguyen, S. Zhu, and M. Liu, “A Survey on Graph
Neural Networks for Microservice-Based Cloud Applications,” Sensors,
vol. 22, no. 23, p. 9492, Jan. 2022, number: 23 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/1424-8220/22/23/9492

G. P. Gu and D. C. Petriu, “Xslt transformation from uml models to Iqn
performance models,” in Proceedings of the 3rd international workshop
on Software and performance, 2002, pp. 227-234.

——, “From uml to Iqn by xml algebra-based model transformations,”
in Proceedings of the 5th international workshop on Software and
performance, 2005, pp. 99-110.

T. Cerny, A. S. Abdelfattah, V. Bushong, A. Al Maruf, and
D. Taibi, “Microservice Architecture Reconstruction and Visualization
Techniques: A Review,” in 2022 IEEE International Conference
on Service-Oriented System Engineering (SOSE), Aug. 2022, pp.
3948, iSSN: 2642-6587. [Online]. Available: https://ieeexplore.ieee.
org/document/9912633/?arnumber=9912633

S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, “Estimating
service resource consumption from response time measurements,”’
in Proceedings of the Fourth International ICST Conference on
Performance Evaluation Methodologies and Tools, ser. VALUETOOLS
’09. Brussels, BEL: ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Oct. 2009,
pp. 1-10. [Online]. Available: https://dl.acm.org/doi/10.4108/ICST.
VALUETOOLS2009.7526

M. Ferriol-Galmés, J. Paillisse, J. Sudrez-Varela, K. Rusek, S. Xiao,
X. Shi, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio, “RouteNet-
Fermi: Network Modeling with Graph Neural Networks,” IEEE/ACM
Transactions on Networking, pp. 1-0, 2023, arXiv:2212.12070 [cs].
[Online]. Available: http://arxiv.org/abs/2212.12070

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4-24, 2020.
D. Pujol-Perich, J. Sudrez-Varela, M. Ferriol, S. Xiao, B. Wu,
A. Cabellos-Aparicio, and P. Barlet-Ros, “Ignnition: Bridging the gap
between graph neural networks and networking systems,” IEEE Network,
vol. 35, no. 6, pp. 171-177, 2021.

K. M. Chandy and D. Neuse, “Linearizer: a heuristic algorithm for
queueing network models of computing systems,” Communications of
the ACM, vol. 25, no. 2, pp. 126-134, Feb. 1982. [Online]. Available:
https://dl.acm.org/doi/10.1145/358396.358403

VIII. BIOGRAPHY SECTION

Matias Richart is currently an Assistant Professor
at University of the Republic (UdelaR) in Uruguay
and a visiting researcher at Polytechnic University of
Catalonia (UPC) in Spain. He received his Computer
Engineer and Master degree from UdelaR in 2011
and 2014 respectively and his Ph.D. from UdelaR
and from UPC in 2019. His research focuses on
the autonomous control and management of net-
works and services through optimization and ma-
chine learning techniques. He also has vast experi-
ence in network simulations.

Juan-Luis Gorricho received a network engineer-
ing degree and Ph.D. degree from the Technical
University of Catalonia (UPC) in 1993 and 1998,
respectively. Since 2001 he is Associate Professor
at the Network Engineering department of the UPC.
His more recent research interests include the de-
velopment of optimization and artificial intelligence
techniques for the management of network and ser-
vices in edge-fog-cloud computing environments.

Javier Baliosian specializes in computer science,
particularly in the areas of computer networks, net-
work management, and autonomous systems. He
earned his bachelor’s degree in computer engineer-
ing from the University of the Republic in Uruguay
in 1998 and his PhD from the Polytechnic University
of Catalonia in Spain in 2005. Currently, Baliosian
is a Full Professor at the University of the Republic,
where he continues his research, focusing on solu-
tions for network management and optimization.

Luis M. Contreras holds an M.Sc. in Telecom-
munications, an M. Sc. in Telematics, and a Ph.D.
in Telematics. Since August 2011 he is part of
Telefonica, working on scalable networks and their
interaction with cloud and distributed services, and
participating in several international projects (cur-
rently under the programmes Horizon Europe and
Smart Network and Services). He is an active con-
tributor to different SDOs, such as IETF, O-RAN,
ETSI, etc

Alejandro Muiiiz received his Computer Engineer-
ing degree from Universitat Politecnica de Valencia
(UPV) and a Master’s in Cybersecurity from Uni-
versidad Politécnica of Madrid (UPM). He works
at Telefénica Innovaciéon Digital, focusing on IP
network protocols for transport networks. He partici-
pates in European and national research projects and
is pursuing a Ph.D. in Communications Technologies
and Systems at UPM.

Joan Serrat-Fernandez received the degree of
Telecommunication Engineer in 1977, and the Doc-
tor degree in Telecommunication Engineering in
1983, both from Universitat Politécnica de Catalunya
(UPC) in Barcelona, Spain. Since 2022 he is an
Emeritus Professor at UPC, involved in projects
of research and promotion of Telecommunication
studies. His topics of expertise are in the field
of autonomic networking and service and network
management.

