Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/50571
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Matías, Richart | - |
dc.contributor.author | Gorricho, Juan-Luis | - |
dc.contributor.author | Baliosian, Javier | - |
dc.contributor.author | Contreras, Luis M. | - |
dc.contributor.author | Muniz, Alejandro | - |
dc.contributor.author | Serrat, Joan | - |
dc.date.accessioned | 2025-07-14T14:42:06Z | - |
dc.date.available | 2025-07-14T14:42:06Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Matías, R., Gorricho, J., Baliosian, J., y otros. "LQ-GNN: A Graph Neural Network model for response time prediction of microservice-based applications in the computing continuum". IEEE Transactions on Parallel and Distributed Systems. [en línea] 2025, pp. 1-12. DOI: 10.1109/TPDS.2025.3564214. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/50571 | - |
dc.description.abstract | To address the challenges posed by the deployment of microservices of future end-user applications in the cloud continuum, a performance prediction model working together with a network elasticity controller will be needed. With that aim, this work introduces Layered Queuing-Graph Neural Networks (LQ-GNN), a novel Machine earning (ML) approach to develop a generalized performance prediction model for microservicebased plications. Unlike previous works focused on individual applications, our proposal aims for a versatile model applicable to any microservice-based application, integrating the Layered Queueing Network (LQN) modeling with Graph Neural Networks (GNN). LQ-GNN allows to efficiently estimate the response time of applications under different resource allocations and placements on the computing continuum. The obtained evaluation results indicate that the roposed model achieves a prediction error below 10% when considering different evaluation scenarios. Compared to existing methodologies, our approach balances prediction accuracy and computational efficiency, making it viable for real-time deployments. Consequently, ML-based performance prediction can significantly enhance the resource management and elasticity control of microservice-based architectures, leading to more resilient and efficient systems. | es |
dc.format.extent | 12 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | IEEE | es |
dc.relation.ispartof | IEEE Transactions on Parallel and Distributed Systems, pp. 1-12. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Computing Continuum | es |
dc.subject | Elasticity | es |
dc.subject | Microservicebased applications | es |
dc.subject | Graph Neural Networks | es |
dc.subject | Machine Learning | es |
dc.title | LQ-GNN: A Graph Neural Network model for response time prediction of microservice-based applications in the computing continuum. | es |
dc.type | Artículo | es |
dc.contributor.filiacion | Matías Richart, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Gorricho Juan-Luis, Universidad de Catalunia (España). | - |
dc.contributor.filiacion | Baliosian Javier, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Contreras Luis M., Telefónica (España). | - |
dc.contributor.filiacion | Muniz Alejandro, Telefónica (España). | - |
dc.contributor.filiacion | Serrat Joan, Universidad de Catalunia (España). | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
dc.identifier.doi | 10.1109/TPDS.2025.3564214 | - |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Computación |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RGBCMS25.pdf | Versión aceptada | 5,44 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons