Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49836
Cómo citar
Título: | Model construction in Stochastic Binary Systems. |
Autor: | Méndez, Federico |
Tipo: | Informe |
Palabras clave: | Stochastic Binary Systems, Mathematical model |
Fecha de publicación: | 2025 |
Resumen: | A Stochastic Binary System (SBS) is a mathematical model representing a multicomponent on-off
system, where components are subject to random failures. Formally, an SBS is defined as a triad
(S, p, ϕ), where S = {1, . . . ,m} is a ground set of components, p = (p1, . . . , pm) ∈ [0, 1]m represents
their elementary reliabilities, and ϕ : {0, 1}m → {0, 1} is the logical rule or structure function that
determines the system’s state based on the states of its components. While previous studies have typically
assumed perfect information about the system, this work focuses on a data-driven approach to model
construction. Specifically, we develop and evaluate machine learning (ML) and deep learning (DL) models
to approximate the structure function ϕ of an SBS using only a random subset of its possible states. The
primary objectives are to maximize accuracy on a test set and investigate trade-offs between accuracy,
computational efficiency, and model complexity. Furthermore, we analyze the generalizability of the
models by evaluating their performance on all possible unobserved states of the system. Experimental
results are promising, with some models achieving perfect accuracy across all possible states in systems
of moderate size, demonstrating the effectiveness of this approach for approximating stochastic systems. |
Descripción: | Pasantía de investigación. Orientador: Pablo Romero. |
Editorial: | Udelar. FI. |
Citación: | Méndez, F. Model construction in Stochastic Binary Systems [en línea]. Pasantía de Investigación. Montevideo : Udelar. FI. INCO, 2025. |
Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Computación |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Men25.pdf | Informe de pasantía | 646,91 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons