
Pasantía de Investigación
Model Construction in Stochastic Binary Systems

Federico Méndez.
Facultad de Ingeniería. Universidad de la República.

20 de Marzo de 2025

Abstract

A Stochastic Binary System (SBS) is a mathematical model representing a multicomponent on-off
system, where components are subject to random failures. Formally, an SBS is defined as a triad
(S, p, ϕ), where S = {1, . . . ,m} is a ground set of components, p = (p1, . . . , pm) ∈ [0, 1]m represents
their elementary reliabilities, and ϕ : {0, 1}m → {0, 1} is the logical rule or structure function that
determines the system’s state based on the states of its components. While previous studies have typically
assumed perfect information about the system, this work focuses on a data-driven approach to model
construction. Specifically, we develop and evaluate machine learning (ML) and deep learning (DL) models
to approximate the structure function ϕ of an SBS using only a random subset of its possible states. The
primary objectives are to maximize accuracy on a test set and investigate trade-offs between accuracy,
computational efficiency, and model complexity. Furthermore, we analyze the generalizability of the
models by evaluating their performance on all possible unobserved states of the system. Experimental
results are promising, with some models achieving perfect accuracy across all possible states in systems
of moderate size, demonstrating the effectiveness of this approach for approximating stochastic systems.

1 Motivation
The study of Stochastic Binary Systems (SBS) has historically focused on deterministic approaches, often
requiring complete state enumeration to analyze system reliability or predict failures. These methods,
while precise, become computationally infeasible for systems with a large number of components due to the
exponential growth of the state space.

Recent advances in Machine Learning (ML) and Deep Learning (DL) offer alternative approaches for
approximating complex systems. Techniques such as neural networks, decision trees, and ensemble methods
have shown success in capturing nonlinear dependencies in high-dimensional data. Applications of ML and
DL in similar domains include fault detection in manufacturing systems, predictive maintenance, and
probabilistic graphical models. However, the application of these methods to SBS remains underexplored.

The primary objective of this work is to develop and evaluate data-driven models, specifically ML and DL
techniques, to approximate the structure function ϕ of an SBS using only a random subset of its possible
states. We aim to maximize accuracy on a test set, investigate trade-offs between accuracy, computational
efficiency, and model complexity, and analyze the generalizability of the models to unobserved states of the
system. This approach provides a scalable alternative to traditional methods, particularly for large-scale
systems where exhaustive state enumeration is impractical.

This document is organized as follows:

• Section 2 introduces key concepts and definitions related to Stochastic Binary Systems, including
reliability, pathsets, cutsets, and separable systems. It also discusses evaluation metrics such as
accuracy, precision, recall, and F1-score, which are used to assess model performance.

• Section 3 provides a detailed description of the Stochastic Binary Systems (SBS) used in this work. It
covers various types of systems, including ARPANET models, k-out-of-n systems, Paris train network
models, hyperplane-based systems, and all-terminal systems. Each system is described in terms of its
components, structure, and relevance to the study. We assume independence of the components of
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each system in the creation of the datasets and we don´t explore cases of very imbalanced classes.
However, oversampling methods could be used to handle those cases.

• Section 4 describes the machine learning and deep learning models used in this work, including Support
Vector Classifiers (SVC), Logistic Regression, Decision Trees, Random Forests, AdaBoost, K-Nearest
Neighbors (KNN), and Deep Neural Networks (DNN). The section provides a theoretical foundation
for each model and discusses their applicability to approximating the structure function ϕ.

• Section 5 presents the experimental results, evaluating model performance on test sets, analyzing the
impact of dataset size, and discussing trade-offs between accuracy, computational efficiency, and model
complexity. It also examines the generalizability of the models to unobserved states of the system.

• Section 6 summarizes the key findings, discussing the effectiveness of the models, the impact of dataset
size, and the trade-offs between accuracy and computational resources. It concludes with insights into
the generalizability of the models and recommendations for future work.

• Section 7 includes figures and supplementary materials, such as plots of data fraction versus
accuracy, CPU time, and model size for each SBS. Additional materials, including all other plots and
supplementary data, can be accessed via the provided Google Drive link.

2 Basic Concepts
2.1 SBS Terminology
The following terminology is adapted from Ball (1986) [1].
Definition 1 (Stochastic Binary System). A stochastic binary system (SBS) is a triad (S, p, φ):

• S = {1, . . . ,m} is a ground set of components,

• p = (p1, . . . , pm) ∈ [0, 1]m contains their elementary reliabilities, and

• φ : {0, 1}m → {0, 1} is the logical rule or structure function of the system.

Definition 2 (Reliability and Unreliability). Let S = (S, p, φ) be an SBS. Define a random vector X =
(X1, . . . , Xm) with independent Bernoulli coordinates such that P (Xi = 1) = pi. The reliability of S is given
by:

rS = P (φ(X) = 1) = E(φ(X)). (1)

The unreliability is qS = 1− rS.

Definition 3 (Pathsets and Cutsets). A possible state x ∈ {0, 1}m is a pathset if φ(x) = 1, and a cutset if
φ(x) = 0.
Definition 4 (Canonical Order). For x, y ∈ {0, 1}m, we denote x ≤ y if and only if xi ≤ yi for all
i = 1, . . . ,m. A function f : A → B between two partially ordered sets A and B is monotone if
f(a1) ≤ f(a2) whenever a1 ≤ a2.

Definition 5 (Stochastic Monotone Binary System). A system S = (S, p, φ) is a stochastic monotone
binary system (SMBS) if φ(0m) = 0, φ(1m) = 1, and φ is non-decreasing with respect to the canonical
order.

Definition 6 (Separable Stochastic Binary System). A stochastic binary system (S, p, φ) is separable if the
set consisting of all pathsets, denoted Q−m, and the set consisting of all cutsets, denoted Q+m, can be linearly
separated by some hyperplane. This concept was introduced and analyzed in the context of reliability by [2].

The most distinguished aspect of separable systems is its efficient representation. Consider a separable
system whose hyperplane π is determined by a point P ∈ π and a normal vector n. Therefore, x is a pathset
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if and only if the inner product between x− P and the normal vector is non-negative:

⟨x− P,n⟩ ≥ 0. (2)

If we denote α0 = ⟨x, P ⟩, then the inner product between x and n must exceed the threshold α. Thus, we
need m + 1 real numbers to represent a separable SBS, in contrast with the exponential representation for
general SBS.

2.2 Evaluation Metrics
In this work, our goal is to evaluate the ability of machine learning and deep learning models to approximate
the structure function ϕ of a Stochastic Binary System (SBS). Since ϕ : {0, 1}m → {0, 1} determines the
system’s state based on the states of its components, we aim to measure how well the learned models can
correctly predict the value of ϕ(x) for a set of observations x ∈ {0, 1}m.

To this end, we use a set of classical metrics for binary classification problems, adapted to the context of
SBS. These metrics are expressed in terms of the structure function ϕ(x) and the model’s predictions ϕ̂(x),
where x varies over a set of observations. Below, we define the metrics that will be used in this work:

2.2.1 Accuracy

Accuracy measures the proportion of correct predictions over the total number of predictions. In the
context of an SBS, it is defined as:

Accuracy =

∑
x∈D I(ϕ(x) = ϕ̂(x))

|D|
,

where D is the set of observations, ϕ(x) is the true value of the structure function, ϕ̂(x) is the model’s
prediction, and I(·) is the indicator function that equals 1 if the condition is true and 0 otherwise.

2.2.2 Precision

Precision measures the proportion of true positives (cases correctly identified as ϕ(x) = 1) over the total
number of positive predictions. For an SBS, it is defined as:

Precision =

∑
x∈D I(ϕ(x) = 1 ∧ ϕ̂(x) = 1)∑

x∈D I(ϕ̂(x) = 1)
.

2.2.3 Recall (Sensitivity)

Recall measures the proportion of true positives over the total number of actual positive cases. In the
context of an SBS, it is defined as:

Recall =
∑

x∈D I(ϕ(x) = 1 ∧ ϕ̂(x) = 1)∑
x∈D I(ϕ(x) = 1)

.

2.2.4 F1-Score

The F1-score is the harmonic mean of precision and recall, providing a balance between the two metrics.
For an SBS, it is defined as:
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F1 = 2× Precision× Recall
Precision + Recall .

2.2.5 Macro Average

The macro average calculates the mean of the metrics (precision, recall, F1) for both classes (ϕ(x) = 0
and ϕ(x) = 1), without considering class imbalance. For an SBS, it is defined as:

Macro Precision =
Precision(ϕ = 0) + Precision(ϕ = 1)

2
,

and similarly for recall and F1-score.

2.2.6 Weighted Average

The weighted average is similar to the macro average but weights each class according to its frequency in
the set of observations. For an SBS, it is defined as:

Weighted Precision =

∑
x∈D I(ϕ(x) = 0) · Precision(ϕ = 0) +

∑
x∈D I(ϕ(x) = 1) · Precision(ϕ = 1)

|D|
,

and similarly for recall and F1-score.

3 Description of Stochastic Binary Systems (SBS)
In this work, we evaluate the performance of machine learning and deep learning models on a variety
of Stochastic Binary Systems (SBS). Each SBS represents a different type of system with unique
characteristics, such as network connectivity, threshold-based activation, or linear separability. Below, we
describe each SBS in detail:

3.1 ARPANET Models (SBS 1 and SBS 2)
• Description: These models simulate the ARPANET network from 1973, representing a

communication network with nodes as key locations (e.g., universities, research labs) and edges as
communication links. The systems are modeled as graphs with two terminal nodes, and the goal is to
determine if there is a path between the source and terminal nodes given the state of the edges.

• Components:

– SBS 1: Source = ”MIT”, Terminal = ”NASA”, 27 components (edges), probability of operation
= 4/5.

– SBS 2: Source = ”Stanford”, Terminal = ”CARN”, 27 components (edges), probability of
operation = 2/3.

• Relevance: These systems are used to evaluate the models’ ability to handle network connectivity
problems with varying probabilities of edge failure.

3.2 k-out-of-n Systems (SBS 3 and SBS 4)
• Description: These systems evaluate whether a certain number of components (k) are active in a

system of n components. The structure function ϕ returns 1 if at least k components are active, and
0 otherwise.
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• Components:

– SBS 3: n = 10, k = 6, probability of operation = 1/2.

– SBS 4: n = 15, k = 7, probability of operation = 1/2.

• Relevance: These systems test the models’ ability to handle threshold-based activation problems,
where the system’s state depends on the number of active components.

3.3 Paris Train Network Models (SBS 5 and SBS 6)
• Description: These models simulate a simplified version of the Paris train network, representing

a transportation system with stations as nodes and train routes as edges. The systems are modeled as
graphs with two terminal stations, and the goal is to determine if there is a path between the source
and terminal stations given the state of the edges.

• Components:

– SBS 5: Source = ”Saint-Lazare”, Terminal = ”Place d’Italie”, 19 components (edges), probability
of operation = 4/5.

– SBS 6: Source = ”République”, Terminal = ”Concorde”, 19 components (edges), probability of
operation = 2/3.

• Relevance: These systems are used to evaluate the models’ ability to handle transportation network
connectivity problems with varying probabilities of edge failure.

3.4 Hyperplane-Based Systems (SBS 7 and SBS 8)
• Description: These systems are constructed using a random hyperplane to separate the state space

into two regions. The structure function ϕ returns 1 if the sum of the weighted components exceeds a
threshold (α), and 0 otherwise.

• Components:

– SBS 7: 10 components, probability of operation = 1/2.

– SBS 8: 15 components, probability of operation = 1/2.

• Relevance: These systems test the models’ ability to handle linearly separable problems, where the
system’s state depends on a weighted combination of the components.

3.5 All-Terminal Systems (SBS 9 and SBS 10)
• Description: These systems model all-terminal connectivity in a graph, where the structure

function ϕ returns 1 if the graph remains fully connected given the state of the edges, and 0 otherwise.

• Components:

– SBS 9: 15 components (edges), probability of operation = 1/2.

– SBS 10: 10 components (edges), probability of operation = 1/2.

• Relevance: These systems are used to evaluate the models’ ability to handle global connectivity
problems in graphs.
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4 Models
In this work, we employ a variety of machine learning (ML) and deep learning (DL) models to approximate
the structure function ϕ of a Stochastic Binary System (SBS). The goal is to learn a mapping from the
state of the system’s components x ∈ {0, 1}m to the system’s state ϕ(x) ∈ {0, 1}, using only a subset of
the possible states. The models selected for this task range from classical statistical methods to advanced
ensemble and neural network-based approaches. Each model has its strengths and limitations, making it
suitable for different types of SBS structures, such as linear, non-linear, or separable systems.

The theoretical foundations of these models are well-established in the literature. For instance, [3] provide
a comprehensive overview of statistical learning methods, including logistic regression and support vector
machines, which are particularly effective for linear and near-linear systems. [5] offers a detailed treatment
of pattern recognition and machine learning, covering decision trees, random forests, and neural networks,
which are well-suited for capturing complex, non-linear relationships. Finally, [4] delve into deep learning
techniques, which excel in high-dimensional and highly non-linear problems.

In the following subsections, we describe the models used in this work, their mathematical formulations,
and their applicability to the problem of approximating the structure function ϕ of an SBS. Each model is
evaluated based on its ability to generalize to unseen states of the system, its computational efficiency, and
its interpretability.

4.1 Support Vector Classifier (SVC)
The Support Vector Classifier (SVC) is a model that seeks to find the hyperplane that best separates the two
classes in the feature space. The hyperplane is chosen to maximize the margin between the closest points of
the classes, known as support vectors.

min
w,b

1

2
∥w∥2 subject to yi(w · xi + b) ≥ 1 ∀i (3)

where w is the weight vector, b is the bias, xi are the input features, and yi are the binary labels.

4.2 Logistic Regression
Logistic Regression is a statistical model that uses a logistic function to model the probability of a binary
outcome. The logistic function is defined as:

P (y = 1|x) = 1

1 + e−(w·x+b)
(4)

where P (y = 1|x) is the probability that the outcome is 1 given the input features x.

4.3 Decision Tree
A Decision Tree is a model that splits the feature space into regions based on the values of the input features.
Each split is chosen to maximize the information gain, which measures the reduction in uncertainty about
the class labels.

4.4 Random Forest
A Random Forest is an ensemble of Decision Trees, where each tree is trained on a random subset of the
data and a random subset of the features. The final prediction is made by averaging the predictions of all
the trees, which helps to reduce overfitting.
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4.5 AdaBoost
AdaBoost (Adaptive Boosting) is an ensemble technique that combines multiple weak classifiers to create
a strong classifier. The algorithm works by iteratively focusing on the misclassified examples, giving them
more weight in subsequent iterations.

Algorithm 1 AdaBoost Algorithm
1: Initialize weights wi =

1
N for each training example i

2: for t = 1 to T do
3: Train a weak classifier ht using the weighted training data
4: Compute the error ϵt of ht

5: Compute the weight αt =
1
2 ln

(
1−ϵt
ϵt

)
6: Update the weights wi ← wi · e−αtyiht(xi)

7: Normalize the weights wi ← wi∑
j wj

8: end for
9: The final classifier is H(x) = sign

(∑T
t=1 αtht(x)

)

4.6 K-Nearest Neighbors (KNN)
K-Nearest Neighbors (KNN) is a non-parametric model that classifies a data point based on the majority
class among its k nearest neighbors in the feature space. The distance between points is typically measured
using Euclidean distance.

d(xi,xj) =

√√√√ n∑
l=1

(xil − xjl)2 (5)

4.7 Deep Neural Networks (DNN)
Deep Neural Networks (DNNs) are composed of multiple layers of neurons, each of which applies a non-linear
transformation to its input. The network is trained using backpropagation, which adjusts the weights of the
neurons to minimize the error between the predicted and actual outputs.

h(l+1) = σ(W(l)h(l) + b(l)) (6)

where h(l) is the output of the l-th layer, W(l) and b(l) are the weights and biases of the l-th layer, and σ
is the activation function.

5 Results
In this section, we present the experimental results of applying various machine learning and deep learning
models to approximate the function of a Stochastic Binary System (SBS). The results are organized to
address the primary objectives of this work: (1 and 2) maximizing accuracy on a test set, (3) evaluating the
effect of data fraction on model performance, (4) investigating trade-offs between accuracy, computational
efficiency, and model complexity, and (5) analyzing the generalizability of the models to unobserved states
of the system
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5.1 Performance on the Test Set
We begin by evaluating the performance of each model on a held-out test set.

5.1.1 Performance on the Test Set for SBS 1

We begin by evaluating the performance of each model on the test set for SBS 1. Table 1 summarizes the
accuracy, precision, recall, and F1-score for each model.

Table 1: Performance Metrics on the Test Set for SBS 1
Model Accuracy Precision Recall F1-Score
Random Forest 0.996 1.00 0.99 1.00
Logistic Regression 0.819 0.82 0.82 0.82
SVC 0.999 1.00 1.00 1.00
KNN 0.835 0.98 0.67 0.79
Decision Tree 0.998 1.00 1.00 1.00
AdaBoost 1.000 1.00 1.00 1.00

Key observations from Table 1 include:

• AdaBoost achieved perfect accuracy (1.00) on the test set, demonstrating its effectiveness for this
specific SBS.

• SVC and Decision Tree also performed exceptionally well, with accuracies of 0.999 and 0.998,
respectively.

• Random Forest achieved an accuracy of 0.996, with high precision and recall for both classes.

• Logistic Regression and KNN had lower accuracies (0.819 and 0.835, respectively), with KNN
showing a significant imbalance between precision and recall for the two classes.

5.1.2 Performance on the Test Set for SBS 2

We now evaluate the performance of each model on the test set for SBS 2. Table 2 summarizes the accuracy,
precision, recall, and F1-score for each model.

Table 2: Performance Metrics on the Test Set for SBS 2
Model Accuracy Precision Recall F1-Score
Random Forest 0.981 0.99 0.96 0.97
Logistic Regression 0.897 0.88 0.83 0.85
SVC 0.993 0.99 0.99 0.99
KNN 0.926 0.90 0.89 0.90
Decision Tree 0.999 1.00 1.00 1.00
AdaBoost 1.000 1.00 1.00 1.00

Key observations from Table 2 include:

• AdaBoost achieved perfect accuracy (1.00), precision, recall, and F1-score, indicating excellent
performance on SBS 2.

• Decision Tree also performed exceptionally well with an accuracy of 0.999.

• SVC had a high accuracy of 0.993, with a macro F1-score of 0.99.

• Random Forest showed strong results, achieving 0.981 accuracy and a macro F1-score of 0.97.
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• KNN and Logistic Regression had lower performances, with accuracy scores of 0.926 and 0.897,
respectively. Logistic Regression struggled with class imbalance, as seen in its recall for the minority
class.

5.1.3 Performance on the Test Set for SBS 3

Table 3 presents the performance metrics of different models on the SBS 3 test set.

Table 3: Performance Metrics on the Test Set for SBS 3
Model Accuracy Precision Recall F1-Score
Random Forest 0.909 0.92 0.91 0.91
Logistic Regression 1.000 1.00 1.00 1.00
SVC 1.000 1.00 1.00 1.00
KNN 0.935 0.94 0.91 0.93
Decision Tree 0.870 0.87 0.86 0.86
AdaBoost 1.000 1.00 1.00 1.00

Key observations from Table 3 include:

• AdaBoost, Logistic Regression, and SVC achieved perfect accuracy (1.00), precision, recall, and
F1-score, indicating excellent performance on SBS 3.

• KNN performed well with an accuracy of 0.935 and an F1-score of 0.93.

• Random Forest showed solid results with 0.909 accuracy and an F1-score of 0.91.

• Decision Tree had the lowest performance, with an accuracy of 0.870 and an F1-score of 0.86.

5.1.4 Performance on the Test Set for SBS 4

Table 4 presents the performance metrics of different models on the SBS 4 test set.

Table 4: Performance Metrics on the Test Set for SBS 4
Model Accuracy Precision Recall F1-Score
Random Forest 0.847 0.86 0.79 0.81
Logistic Regression 1.000 1.00 1.00 1.00
SVC 1.000 1.00 1.00 1.00
KNN 0.805 0.81 0.74 0.75
Decision Tree 0.740 0.71 0.70 0.71
AdaBoost 1.000 1.00 1.00 1.00

Key observations from Table 4 include:

• AdaBoost, SVC, and Logistic Regression achieved perfect accuracy (1.00), precision, recall, and
F1-score.

• Random Forest performed well with an accuracy of 0.847, though recall was lower than precision.

• KNN had an accuracy of 0.805, with a recall of 0.74.

• Decision Tree had the lowest performance with 0.740 accuracy, showing that it struggled compared
to other models.
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Table 5: Performance Metrics on the Test Set for SBS 5
Model Accuracy Precision Recall F1-Score
Random Forest 0.961 0.97 0.95 0.96
Logistic Regression 0.899 0.90 0.89 0.89
SVC 0.981 0.98 0.98 0.98
KNN 0.854 0.88 0.82 0.83
Decision Tree 0.961 0.96 0.96 0.96
AdaBoost 0.997 1.00 1.00 1.00

5.1.5 Performance Metrics on the Test Set for SBS 5

Key observations from Table 5 include:

• AdaBoost achieved nearly perfect performance with an accuracy of 0.997 and an F1-score of 1.00.

• SVC performed exceptionally well, reaching an accuracy of 0.981 and a macro F1-score of 0.98.

• Random Forest and Decision Tree both achieved strong results, with an accuracy of 0.961 and an
F1-score of 0.96.

• Logistic Regression had an accuracy of 0.899 but struggled slightly compared to more complex
models.

• KNN had the lowest performance, with an accuracy of 0.854, likely due to its sensitivity to local
variations in data distribution.

5.1.6 Performance Metrics on the Test Set for SBS 6

Table 6: Performance Metrics on the Test Set for SBS 6
Model Accuracy Precision Recall F1-Score
Random Forest 0.968 0.97 0.96 0.97
Logistic Regression 0.893 0.89 0.89 0.89
SVC 0.971 0.97 0.97 0.97
KNN 0.906 0.90 0.91 0.90
Decision Tree 0.964 0.96 0.96 0.96
AdaBoost 0.987 0.99 0.98 0.99

Key observations from Table 6 include:

• AdaBoost achieved the best performance with an accuracy of 0.987 and an F1-score of 0.99.

• SVC performed exceptionally well, reaching an accuracy of 0.971 and a macro F1-score of 0.97.

• Random Forest and Decision Tree also showed strong results, with accuracies of 0.968 and 0.964,
respectively, and F1-scores above 0.96.

• Logistic Regression had an accuracy of 0.893, performing lower than more complex models but
maintaining a balanced precision-recall trade-off.

• KNN had a moderate performance with an accuracy of 0.906, benefiting from optimized parameters
but still trailing behind ensemble methods.

5.1.7 Performance Metrics on the Test Set for SBS 7

Key observations from Table 7 include:

10



Table 7: Performance Metrics on the Test Set for SBS 7
Model Accuracy Precision Recall F1-Score
Random Forest 0.922 0.92 0.93 0.92
Logistic Regression 0.987 0.99 0.98 0.99
SVC 0.974 0.97 0.98 0.97
KNN 0.831 0.83 0.84 0.83
Decision Tree 0.883 0.88 0.88 0.88
AdaBoost 0.987 0.99 0.98 0.99

• Logistic Regression and AdaBoost achieved the best performance with an accuracy of 0.987 and
an F1-score of 0.99.

• SVC also performed exceptionally well, reaching an accuracy of 0.974 and an F1-score of 0.97.

• Random Forest demonstrated strong performance with an accuracy of 0.922 and an F1-score of 0.92.

• Decision Tree had moderate results, achieving an accuracy of 0.883 and an F1-score of 0.88.

• KNN had the lowest performance, with an accuracy of 0.831, likely due to its sensitivity to local
variations in data distribution.

5.1.8 Performance Metrics on the Test Set for SBS 8

Table 8: Performance Metrics on the Test Set for SBS 8
Model Accuracy Precision Recall F1-Score
Random Forest 0.877 0.88 0.88 0.88
Logistic Regression 0.968 0.97 0.97 0.97
SVC 0.974 0.97 0.97 0.97
KNN 0.864 0.86 0.86 0.86
Decision Tree 0.805 0.81 0.81 0.81
AdaBoost 0.961 0.96 0.96 0.96

Key observations from Table 8 include:

• Logistic Regression and SVC achieved the best performance with an accuracy of 0.968 and 0.974,
respectively, along with an F1-score of 0.97.

• AdaBoost also performed exceptionally well, reaching an accuracy of 0.961 and an F1-score of 0.96.

• Random Forest demonstrated strong performance with an accuracy of 0.877 and an F1-score of 0.88.

• KNN had moderate results, achieving an accuracy of 0.864 and an F1-score of 0.86.

• Decision Tree had the lowest performance, with an accuracy of 0.805, indicating potential overfitting
or sensitivity to noise in the dataset.

5.1.9 Performance Metrics on the Test Set for SBS 9

Key observations from Table 9 include:

• Too little data appears to make it hard for the models to capture the underlying structure.

• Logistic Regression achieved the highest accuracy (0.857) and the best F1-score (0.85), making it
the top-performing model.

• SVC performed well with an accuracy of 0.831 and an F1-score of 0.83.
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Table 9: Performance Metrics on the Test Set for SBS 9
Model Accuracy Precision Recall F1-Score
Random Forest 0.805 0.82 0.79 0.79
Logistic Regression 0.857 0.86 0.85 0.85
SVC 0.831 0.83 0.82 0.83
KNN 0.727 0.77 0.70 0.70
Decision Tree 0.662 0.66 0.66 0.66
AdaBoost 0.805 0.81 0.79 0.80

5.1.10 Performance Metrics on the Test Set for SBS 10

Table 10: Performance Metrics on the Test Set for SBS 10
Model Accuracy Precision Recall F1-Score
Random Forest 0.935 0.94 0.89 0.91
Logistic Regression 0.870 0.84 0.79 0.81
SVC 0.948 0.93 0.93 0.93
KNN 0.922 0.93 0.86 0.89
Decision Tree 0.896 0.85 0.88 0.86
AdaBoost 0.922 0.90 0.90 0.90

Key observations from Table 10 include:

• SVC achieved the best performance with an accuracy of 0.948 and an F1-score of 0.93.

• Random Forest also performed very well, reaching an accuracy of 0.935 and an F1-score of 0.91.

• KNN and AdaBoost showed strong results, both obtaining an accuracy of 0.922 and an F1-score of
0.90.

• Decision Tree had an accuracy of 0.896 and an F1-score of 0.86, making it slightly less effective than
other models.

• Logistic Regression had the lowest performance, with an accuracy of 0.870 and an F1-score of 0.81.

5.1.11 Performance on Test Set for Deep Learning Models

Table 11: Deep Learning Models’ Accuracy on the Test Set for Each SBS
SBS Test Set Accuracy (DL)
SBS 1 0.9996
SBS 2 0.9994
SBS 3 0.9870
SBS 4 1.0000
SBS 5 0.9708
SBS 6 0.9610
SBS 7 0.9610
SBS 8 0.9156
SBS 9 0.8442
SBS 10 0.8701

Key observations from Table 11 include:
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• SBS 1 and SBS 2: The deep learning models achieved near-perfect accuracy (0.9996 and 0.9994,
respectively), demonstrating their effectiveness for these complex systems.

• SBS 3 and SBS 4: The deep learning models achieved high accuracy (0.9870 and 1.0000, respectively),
with SBS 4 achieving perfect accuracy.

• SBS 5, SBS 6, and SBS 7: The deep learning models achieved moderate accuracy (0.9708, 0.9610,
and 0.9610, respectively), indicating good performance but slightly lower than the best-performing
machine learning models.

• SBS 8, SBS 9, and SBS 10: The deep learning models achieved lower accuracy (0.9156, 0.8442,
and 0.8701, respectively), suggesting that simpler machine learning models like SVC and Logistic
Regression may be more effective for these systems.

These results show that deep learning models are highly effective for complex systems with lots of training
data like SBS 1, SBS 2, and SBS 4, where they achieved near-perfect or perfect accuracy. However, for
systems with less data or simpler structures, machine learning models like SVC and Logistic Regression
outperformed deep learning models. This highlights the importance of selecting the appropriate model based
on the characteristics of the SBS being studied.

5.2 Analysis of Results
To optimize the performance of each model, we conducted hyperparameter tuning using grid search and
cross-validation.

The hyperparameter tuning results across the ten stochastic binary systems (SBS 1 to SBS 10) reveal
significant insights into the performance of various machine learning models and their suitability for learning
the structure of these systems. Overall, AdaBoost, as well as linear models like LogisticRegression
and SVC with linear kernels for SBSs of simpler structures (see separable systems), consistently achieve
high performance, while distance-based methods like KNN and simpler models like DecisionTree often
struggle to match their accuracy. The results highlight the importance of selecting the right model and
hyperparameters based on the specific characteristics of each SBS.

For SBS 1 to SBS 4, AdaBoost emerges as the top-performing model in most cases, achieving perfect or
near-perfect accuracy. This underscores the power of ensemble methods in correcting errors and capturing
complex patterns. SVC with non-linear kernels (e.g., rbf) also performs exceptionally well on SBS 1 and
SBS 2, suggesting that these systems have non-linear structures. In contrast, LogisticRegression and SVC
with linear kernels dominate SBS 3 and SBS 4, indicating that these systems have linear or near-linear
structures. KNN and DecisionTree show moderate to poor performance, particularly on SBS 4, where
DecisionTree struggles significantly. This suggests that distance-based and hierarchical models may not
be well-suited for certain SBS, especially when the data structure is complex or imbalanced.

Moving to SBS 5 to SBS 10, the trend continues with AdaBoost and SVC (with both linear and rbf
kernels) consistently achieving high accuracy. LogisticRegression also performs exceptionally well on
SBS 7 and SBS 8, further supporting the idea that these systems have linear structures. RandomForest
performs well in many cases but struggles with recall for certain classes, particularly in SBS 9, where
it achieves only 50% recall for class 1. KNN and DecisionTree continue to underperform, with KNN
struggling with recall for minority classes and DecisionTree showing poor performance on SBS 9 and
SBS 10. These results suggest that while ensemble and linear models are robust and versatile, simpler
models like KNN and DecisionTree may not be suitable for more complex or imbalanced SBS.

However, a notable trend is the declining effectiveness of models starting around SBS 7, which may be
attributed to the fact that these models were trained and evaluated using significantly fewer data points
compared to earlier SBS. For example, SBS 7 has only 77 data points, SBS 8 has 154, and SBS 9 has
77, whereas earlier systems like SBS 1 and SBS 2 were evaluated on 4,916 data points. This reduction in
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dataset size likely impacts model performance, as smaller datasets provide less information for the models
to learn the underlying structure of the system, leading to overfitting or poor generalization.

In SBS 7 to SBS 10, models like RandomForest, KNN, and DecisionTree show a noticeable decline in
performance, particularly in terms of recall and F1-score for minority classes. For instance, RandomForest
in SBS 9 achieves only 50% recall for class 1, and KNN in SBS 9 struggles with a recall of 47% for the same
class. This suggests that these models, which rely heavily on the availability of sufficient data to capture
patterns, are less effective when trained on smaller datasets. DecisionTree, in particular, performs poorly
in SBS 9 and SBS 10, likely due to its tendency to overfit when data is scarce.

On the other hand, AdaBoost and LogisticRegression maintain relatively strong performance even on
smaller datasets, with AdaBoost achieving perfect or near-perfect accuracy in SBS 7 and SBS 8, and
LogisticRegression excelling in SBS 7 and SBS 9. This resilience can be attributed to the regularization
effects in LogisticRegression and the error-correcting nature of AdaBoost, which help these models
generalize better even with limited data. However, even these models show slight declines in performance
in SBS 10, where SVC emerges as the best performer, suggesting that the dataset size and potential class
imbalance are still limiting factors.

In conclusion, the choice of model and hyperparameters should be guided by the specific characteristics
of the SBS being studied. AdaBoost and SVC are generally the most reliable choices, particularly for
systems with non-linear structures, while LogisticRegression excels in systems with linear or near-linear
structures. RandomForest is a strong alternative for its interpretability and robustness, but KNN and
DecisionTree should be used with caution, especially in cases of class imbalance or complex data structures.
The declining effectiveness of models starting at SBS 7 is likely due to the smaller dataset sizes, which make
it harder for models to learn the underlying structure of the system. Models like RandomForest, KNN,
and DecisionTree, which rely on larger datasets to capture complex patterns, are particularly affected. In
contrast, AdaBoost and LogisticRegression demonstrate greater robustness to smaller datasets, though
their performance still diminishes slightly as data becomes scarcer. This highlights the importance of dataset
size in model performance and suggests that future work could focus on data augmentation or synthetic data
generation to improve results for systems with limited data.

5.3 Impact of Data Fraction on Model Performance
To understand how the fraction of training data affects model performance, we evaluated accuracy, model
size, and CPU time for different fractions of the dataset (from 100% to 10%, in steps of 10%) for SBS 1 to 8.

5.3.1 General Trends Across All SBS Datasets

Effect of Dataset Size on Model Performance:

• AdaBoost, SVC, and DecisionTree are the most robust models across all SBS datasets. They maintain
high accuracy and balanced metrics (precision, recall, F1-score) even when trained on as little as 10%
of the data.

• RandomForest is also robust but shows a slight decline in performance with smaller datasets,
particularly at the 10% fraction. This indicates that RandomForest benefits from larger datasets but
remains relatively stable.

• LogisticRegression performs exceptionally well in datasets with linear or near-linear structures (e.g.,
SBS 3, SBS 4, and SBS 7), achieving perfect or near-perfect accuracy even with small fractions of the
data. However, it struggles in datasets with non-linear structures (e.g., SBS 1, SBS 2, and SBS 5),
where its performance is lower.

• KNN is the most sensitive to dataset size, with performance declining significantly as the dataset
shrinks. This is expected, as KNN relies heavily on the density and distribution of data points, and
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smaller datasets lead to poorer generalization.

Key Recommendations:

• For High Accuracy with Small Datasets: Use AdaBoost or SVC as they maintain high performance
even with smaller fractions of the data.

• For Linear or Near-Linear Structures: Use Logistic Regression, as it achieves perfect or near-perfect
accuracy in such cases, even with small fractions of the data.

• Avoid KNN: KNN is not recommended for SBS datasets, especially with smaller fractions of the data,
due to its sensitivity to dataset size.

5.3.2 Dataset-Specific Insights

SBS 1

• Structure: Non-linear.

• Effect of Dataset Size:

– AdaBoost, SVC, and DecisionTree achieve perfect or near-perfect accuracy across all fractions,
including 10% of the data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 94.7%).

– LogisticRegression shows stable but lower performance (accuracy around 80-81%) across all
fractions, as the non-linear structure is not well-suited for its linear decision boundary.

– KNN exhibits the most significant decline in performance, dropping from 84.3% at 100% data to
73.8% at 10% data.

SBS 2

• Structure: Non-linear.

• Effect of Dataset Size:

– AdaBoost, SVC, and DecisionTree maintain high accuracy across all fractions, including 10% of
the data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 92.5%).

– LogisticRegression shows stable but lower performance (accuracy around 89-90%) across all
fractions, as the non-linear structure limits its effectiveness.

– KNN exhibits a significant decline in performance, dropping from 92.8% at 100% data to 86.1%
at 10% data.

SBS 3

• Structure: Linear or near-linear.

• Effect of Dataset Size:

– AdaBoost, SVC, and LogisticRegression achieve perfect accuracy (100%) across all fractions,
including 10% of the data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 75%).
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– KNN exhibits a significant decline in performance, dropping from 90.3% at 100% data to 75% at
10% data.

– DecisionTree shows moderate performance, with accuracy ranging from 72.7% at 10% data to
85.1% at 100% data.

SBS 4

• Structure: Linear or near-linear.

• Effect of Dataset Size:

– AdaBoost, LogisticRegression, and SVC achieve perfect accuracy (100%) across all fractions,
including 10% of the data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 77.4%).

– KNN exhibits a significant decline in performance, dropping from 83.1% at 100% data to 67.7%
at 10% data.

– DecisionTree shows moderate performance, with accuracy ranging from 70.1% at 10% data to
83.9% at 100% data.

SBS 5

• Structure: Non-linear.

• Effect of Dataset Size:

– AdaBoost, DecisionTree, and SVC achieve high accuracy across all fractions, including 10% of the
data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 87.1%).

– LogisticRegression shows stable performance (accuracy around 87-90%) across all fractions, but
its linear decision boundary is less suited for the non-linear structure.

– KNN exhibits a significant decline in performance, dropping from 86.0% at 100% data to 83.9%
at 10% data.

SBS 6

• Structure: Non-linear.

• Effect of Dataset Size:

– AdaBoost, SVC, and DecisionTree achieve high accuracy across all fractions, including 10% of the
data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 77.4%).

– LogisticRegression shows stable performance (accuracy around 89-90%) across all fractions, but
its linear decision boundary is less suited for the non-linear structure.

– KNN exhibits a significant decline in performance, dropping from 87.3% at 100% data to 67.7%
at 10% data.
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SBS 7

• Structure: Linear or near-linear.

• Effect of Dataset Size:

– AdaBoost, LogisticRegression, and SVC achieve perfect accuracy (100%) across all fractions,
including 10% of the data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 62.5%).

– DecisionTree shows moderate performance, with accuracy ranging from 67.7% at 10% data to
87.7% at 100% data.

– KNN exhibits a significant decline in performance, dropping from 80.5% at 100% data to 75% at
10% data.

SBS 8

• Structure: Non-linear.

• Effect of Dataset Size:

– AdaBoost, LogisticRegression, and SVC achieve high accuracy across all fractions, including 10%
of the data.

– RandomForest performs well but shows a slight decline at 10% data (accuracy drops to 62.5%).

– DecisionTree shows moderate performance, with accuracy ranging from 67.7% at 10% data to
87.7% at 100% data.

– KNN exhibits a significant decline in performance, dropping from 80.5% at 100% data to 75% at
10% data.

5.3.3 Key Insights Across All SBS Datasets

• AdaBoost:

– Consistently achieves the highest accuracy across all SBS datasets, even with 10% of the data.

– Demonstrates robustness and generalization capabilities, making it the top-performing model.

• SVC:

– Performs exceptionally well across all datasets, maintaining high accuracy even with 10% of the
data.

– Its non-linear decision boundary is well-suited for the complex structures of SBS datasets.

• DecisionTree:

– Performs well across all datasets but shows slight declines in accuracy with smaller fractions of
the data.

– Its performance is consistent but not as robust as AdaBoost or SVC.

• RandomForest:

– Performs well but benefits from larger datasets, showing slight declines in accuracy with smaller
fractions.

– Its ensemble nature makes it robust but less effective than AdaBoost or SVC.

• LogisticRegression:
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– Excels in datasets with linear or near-linear structures (e.g., SBS 3, SBS 4, and SBS 7), achieving
perfect or near-perfect accuracy even with 10% of the data.

– Struggles in datasets with non-linear structures (e.g., SBS 1, SBS 2, and SBS 5), where its
performance is lower.

• KNN:

– Exhibits the most significant decline in performance with smaller fractions of the data.

– Its reliance on data density and distribution makes it sensitive to dataset size.

5.3.4 Conclusion

The analysis of all SBS datasets highlights the importance of selecting the right model based on dataset size
and dataset structure. AdaBoost and SVC are the best-performing models, maintaining high accuracy and
robustness even with 10% of the data. Random Forest and Decision Tree are also effective but show slight
declines in accuracy with smaller fractions of the data. Logistic Regression excels in datasets with linear
or near-linear structures, achieving perfect or near-perfect accuracy in such cases, even with small fractions
of the data, but struggles in datasets with non-linear structures. KNN is less effective, particularly with
smaller fractions of the data, due to its sensitivity to dataset size.

These findings underscore the trade-offs between performance and dataset size and emphasize the need
for careful model selection in machine learning applications. For linear or near-linear datasets, Logistic
Regression is not only highly accurate but also efficient and interpretable, making it a top choice. For
non-linear datasets, more complex models like AdaBoost or SVC should be preferred.

5.4 Trade-offs Between CPU Time, Model Size, and Accuracy
This analysis provides a holistic view of the trade-offs between accuracy, CPU time (prediction time), and
model size across different datasets and fractions:

5.4.1 CPU Time (Prediction Time)

• LogisticRegression and DecisionTree are the fastest models, with prediction times in the range of
1× 10−7 to 2× 10−7 seconds. These models are ideal for real-time applications where speed is critical.

• RandomForest and AdaBoost have moderate prediction times, ranging from 4 × 10−6 to 8 × 10−6

seconds, which is still very fast but slower than LogisticRegression and DecisionTree.

• SVC and KNN are the slowest, with prediction times ranging from 5×10−5 to 1.6×10−4 seconds. This
makes them less suitable for real-time applications or scenarios where prediction speed is a priority.

Key Insight: LogisticRegression and DecisionTree are the best choices for minimizing CPU time, while
SVC and KNN are the slowest.

5.4.2 Model Size

• LogisticRegression has the smallest model size (1.64 KB across all datasets and fractions), making it
highly efficient in terms of storage and memory usage.

• DecisionTree also has a small model size (ranging from 6.37 KB to 20.99 KB), making it another
storage-efficient option.

• AdaBoost and SVC have moderate model sizes (ranging from 51.98 KB to 636.25 KB), which are
manageable but larger than LogisticRegression and DecisionTree.
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• RandomForest and KNN have the largest model sizes (ranging from 5.5 MB to 21.6 MB for
RandomForest and 260 KB to 2.6 MB for KNN), making them less efficient in terms of storage.

Key Insight: LogisticRegression and DecisionTree are the most storage-efficient models, while
RandomForest and KNN require significantly more storage.

5.4.3 Trade-offs Between Metrics

• AdaBoost offers the best accuracy but at the cost of larger model size and moderate CPU time. It is
ideal when accuracy is the top priority and storage/CPU resources are not severely constrained.

• SVC provides excellent accuracy but has the highest CPU time and moderate model size. It is suitable
for applications where accuracy is critical and prediction speed is not a major concern.

• RandomForest balances accuracy, CPU time, and model size reasonably well, though it is not the best
in any single category. It is a good all-rounder for many applications.

• DecisionTree is highly efficient in terms of CPU time and model size while maintaining high accuracy.
It is ideal for applications requiring really fast predictions and minimal storage but involving complex
systems that cannot be properly learned by Logistic Regression.

• Logistic Regression is the most efficient in terms of CPU time and model size but sacrifices accuracy
when the SBS is far from linear. However, for linear systems such as separable SBS it is the best choice.

• KNN has poor accuracy, high CPU time, and large model size, making it the least favorable choice for
these datasets.

5.4.4 Impact of Dataset Fraction

• As the dataset fraction decreases, the accuracy of most models remains stable or slightly decreases,
indicating robustness to smaller datasets.

• Model size generally decreases with smaller dataset fractions, as expected, since fewer data points are
used for training.

• CPU time remains relatively stable across fractions for most models, suggesting that prediction time
is not heavily influenced by the size of the training data.

5.4.5 Recommendations

• For High Accuracy: Use AdaBoost or SVC, but be prepared for larger model sizes and higher CPU
times.

• For Speed and Efficiency: Use Logistic Regression or Decision Tree, especially for real-time
applications or resource-constrained environments.

• For Separable Systems or near Separable: Use Logistic Regression.

5.4.6 Conclusion

The choice of model depends on the specific requirements of the application. If accuracy is paramount
and the system complex, AdaBoost or SVC should be used despite their higher resource requirements. For
applications where speed and storage efficiency are critical, Logistic Regression or Decision Tree are the best
options. If the system is separable Logistic Regression is the best. Across all SBS datasets, the trade-offs
between accuracy, CPU time, and model size remain consistent, allowing for informed decisions based on
the application’s priorities.
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5.5 Generalizability to Unobserved States
To evaluate the generalizability of the models, we tested their performance on all possible unobserved states
of the system (or a significant percentage for SBS 1 and 2 which are of enormous size).

5.5.1 Machine Learning Models

The generalization accuracy of the best machine learning models for each SBS (1 to 10) varies significantly.
Some models achieve perfect generalization, while others exhibit varying degrees of accuracy.

For SBS1 and SBS2, the AdaBoost Classifier achieves a perfect accuracy of 1.00, indicating flawless
generalization across the dataset. Similarly, for SBS3 and SBS4, the Logistic Regression models also attain
perfect generalization with an accuracy of 1.00.

However, for SBS5 and SBS6, the AdaBoost Classifier shows a slight decrease in generalization accuracy,
with an accuracy of 0.99. The precision and recall values indicate minor misclassifications, but overall, these
models still generalize well.

SBS7, SBS8, and SBS9 exhibit significantly lower generalization accuracy. The Logistic Regression model for
SBS7 achieves an accuracy of 0.70, indicating a substantial gap in predictive performance. The SVC model
for SBS8 performs slightly better at 0.71 accuracy, while the Logistic Regression model for SBS9 improves
further with an accuracy of 0.80.

Finally, SBS10’s SVC model generalizes well with an accuracy of 0.92, demonstrating strong but not perfect
performance.

In summary, the models for SBS1-SBS4 generalize perfectly, SBS5-SBS6 generalize very well with slight
imperfections, and SBS7-SBS9 show notable room for improvement in generalization accuracy. SBS10
maintains a strong generalization performance, albeit not flawless.

One possible explanation for the observed trend is the decreasing amount of training data as the SBS number
increases. SBS1, having the largest dataset, allows the models to learn more effectively, while SBS10, with
the smallest dataset, faces greater challenges in generalization.

5.5.2 Deep Learning Models

The generalization accuracy of the best deep learning models for each SBS (1 to 10) varies significantly.
Some models achieve perfect generalization, while others exhibit varying degrees of accuracy.

For SBS1 and SBS2, the deep learning model achieves a perfect accuracy of 1.00, indicating flawless
generalization across the dataset. Similarly, for SBS3 and SBS4, the models also attain perfect
generalization with an accuracy of 1.00.

However, for SBS5 and SBS6, the generalization accuracy slightly decreases, with an accuracy of 0.99. The
precision and recall values indicate minor misclassifications, but overall, these models still generalize well.

SBS7, SBS8, and SBS9 exhibit significantly lower generalization accuracy. The model for SBS7 achieves an
accuracy of 0.70, indicating a substantial gap in predictive performance. The deep learning model for SBS8
performs slightly better at 0.71 accuracy, while the model for SBS9 improves further with an accuracy of
0.80.

Finally, SBS10’s deep learning model generalizes well with an accuracy of 0.87, demonstrating strong but
not perfect performance.

In summary, the models for SBS1-SBS4 generalize perfectly, SBS5-SBS6 generalize very well with slight
imperfections, and SBS7-SBS9 show notable room for improvement in generalization accuracy. SBS10
maintains a strong generalization performance, albeit not flawless. The decrease in generalization accuracy
may be due to the decreasing amount of training data as the SBS number increases.
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6 Discussion of Key Findings
6.1 Effectiveness of Machine Learning Models

• AdaBoost consistently outperformed other models, achieving perfect accuracy in several SBS cases,
demonstrating its robustness for approximating stochastic binary systems.

• SVC and Logistic Regression also performed exceptionally well, particularly for SBS datasets with
near-linear structures.

• Random Forest provided strong results but showed limitations in recall for certain datasets.

• Decision Tree and KNN struggled in cases with complex structures or imbalanced data, making them
less reliable options.

6.2 Impact of Dataset Size on Model Performance
• Models trained on larger datasets (e.g., SBS 1 and SBS 2) generalized well, achieving near-perfect

accuracy.

• Performance declined in datasets with fewer data points (e.g., SBS 7–SBS 10), indicating that small
sample sizes limit the ability to learn underlying structures effectively.

• Logistic Regression remained stable across different dataset sizes for near-linear SBS, while ensemble
methods like AdaBoost were more resilient for complex structures.

6.3 Trade-offs Between Accuracy, Model Complexity, and Computational
Efficiency

• Logistic Regression and Decision Tree were the most efficient in terms of computational speed and
model size, making them suitable for real-time applications.

• AdaBoost and SVC achieved the highest accuracy but required more computational resources, making
them ideal for high-precision applications where efficiency is less critical.

• For separable systems Logistic Regression was the best in all dimensions, achievig perfect accuracy and
great efficiency.

• KNN exhibited the slowest prediction times and required the largest storage, making it the least
favorable choice in terms of efficiency.

6.4 Generalizability to Unobserved States
• Models trained on SBS 1–SBS 4 generalized perfectly, whereas those on SBS 7–SBS 9 showed a notable

decline in generalization accuracy.

• The decreasing amount of training data in later SBS datasets contributed to reduced generalization
performance.

• Deep learning models performed similarly to machine learning models, with perfect generalization for
SBS 1–SBS 4 but diminishing accuracy in SBS 7–SBS 9.

These findings highlight the importance of selecting the appropriate machine learning approach based on
dataset size, complexity, and computational constraints to optimize predictive performance in stochastic
binary systems.
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7 Figures
7.1 Machine Learning
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All other plots and supplementary materials can be accessed at the following link: Google Drive Folder.

7.2 Deep Neural Networks

All other plots and supplementary materials can be accessed at the following link: Google Drive Folder.
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