Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49836
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Méndez, Federico | - |
dc.date.accessioned | 2025-04-29T15:54:32Z | - |
dc.date.available | 2025-04-29T15:54:32Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Méndez, F. Model construction in Stochastic Binary Systems [en línea]. Pasantía de Investigación. Montevideo : Udelar. FI. INCO, 2025. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/49836 | - |
dc.description | Pasantía de investigación. | es |
dc.description | Orientador: Pablo Romero. | es |
dc.description.abstract | A Stochastic Binary System (SBS) is a mathematical model representing a multicomponent on-off system, where components are subject to random failures. Formally, an SBS is defined as a triad (S, p, ϕ), where S = {1, . . . ,m} is a ground set of components, p = (p1, . . . , pm) ∈ [0, 1]m represents their elementary reliabilities, and ϕ : {0, 1}m → {0, 1} is the logical rule or structure function that determines the system’s state based on the states of its components. While previous studies have typically assumed perfect information about the system, this work focuses on a data-driven approach to model construction. Specifically, we develop and evaluate machine learning (ML) and deep learning (DL) models to approximate the structure function ϕ of an SBS using only a random subset of its possible states. The primary objectives are to maximize accuracy on a test set and investigate trade-offs between accuracy, computational efficiency, and model complexity. Furthermore, we analyze the generalizability of the models by evaluating their performance on all possible unobserved states of the system. Experimental results are promising, with some models achieving perfect accuracy across all possible states in systems of moderate size, demonstrating the effectiveness of this approach for approximating stochastic systems. | es |
dc.format.extent | 24 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | Udelar. FI. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Stochastic Binary Systems | es |
dc.subject | Mathematical model | es |
dc.title | Model construction in Stochastic Binary Systems. | es |
dc.type | Informe | es |
dc.contributor.filiacion | Méndez Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Computación |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
Men25.pdf | Informe de pasantía | 646,91 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons