Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/47666
Cómo citar
Título: | Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. |
Autor: | Acosta, Gabriel Borthagaray, Juan Pablo Bruno, Oscar Maas, Martín |
Tipo: | Preprint |
Palabras clave: | Fractional Laplacian, Hypersingular integral equations, High order numerical methods, Gegenbauer polynomials |
Fecha de publicación: | 2017 |
Resumen: | This paper presents regularity results and associated high-order numerical methods for one-dimensional Fractional-Laplacian boundary-value problems. On the basis of a factorization of solutions as a product of a certain edge-singular weight ω times a "regular" unknown, a characterization of the regularity of solutions is obtained in terms of the smoothness of the corresponding right-hand sides. In particular, for right-hand sides which are analytic in a Bernstein Ellipse, analyticity in the same Bernstein Ellipse is obtained for the "regular" unknown. Moreover, a sharp Sobolev regularity result is presented which completely characterizes the co-domain of the Fractional-Laplacian operator in terms of certain weighted Sobolev spaces introduced in (Babuška and Guo, SIAM J. Numer. Anal. 2002). The present theoretical treatment relies on a full eigendecomposition for a certain weighted integral operator in terms of the Gegenbauer polynomial basis. The proposed Gegenbauer-based Nyström numerical method for the Fractional-Laplacian Dirichlet problem, further, is significantly more accurate and efficient than other algorithms considered previously. The sharp error estimates presented in this paper indicate that the proposed algorithm is spectrally accurate, with convergence rates that only depend on the smoothness of the right-hand side. In particular, convergence is exponentially fast (resp. faster than any power of the mesh-size) for analytic (resp. in nitely smooth) right-hand sides. The properties of the algorithm are illustrated with a variety of numerical results. |
Descripción: | También publicado en Mathematics of Computation, vol. 87, no. 312, jul. 2018, pp. 1821-1857. DOI: 10.1090/mcom/3276. |
Editorial: | arXiv |
EN: | Mathematics. Numerical Analysis (math.NA), arXiv:1608.08443v2, mar 2017, pp 1-37 |
Financiadores: | Beca de Posgrado del CONICET, Argentina. |
Citación: | Acosta, G., Borthagaray, J., Bruno, O. y otros. Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. [Preprint]. Publicado en: Mathematics. Numerical Analysis (math.NA), 2017, pp. 1-37. arXiv:1608.08443v2. |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ABBM17.pdf | Preprint | 1,37 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons