english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/47666 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAcosta, Gabriel-
dc.contributor.authorBorthagaray, Juan Pablo-
dc.contributor.authorBruno, Oscar-
dc.contributor.authorMaas, Martín-
dc.date.accessioned2024-12-20T15:10:06Z-
dc.date.available2024-12-20T15:10:06Z-
dc.date.issued2017-
dc.identifier.citationAcosta, G., Borthagaray, J., Bruno, O. y otros. Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. [Preprint]. Publicado en: Mathematics. Numerical Analysis (math.NA), 2017, pp. 1-37. arXiv:1608.08443v2.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/47666-
dc.descriptionTambién publicado en Mathematics of Computation, vol. 87, no. 312, jul. 2018, pp. 1821-1857. DOI: 10.1090/mcom/3276.es
dc.description.abstractThis paper presents regularity results and associated high-order numerical methods for one-dimensional Fractional-Laplacian boundary-value problems. On the basis of a factorization of solutions as a product of a certain edge-singular weight ω times a "regular" unknown, a characterization of the regularity of solutions is obtained in terms of the smoothness of the corresponding right-hand sides. In particular, for right-hand sides which are analytic in a Bernstein Ellipse, analyticity in the same Bernstein Ellipse is obtained for the "regular" unknown. Moreover, a sharp Sobolev regularity result is presented which completely characterizes the co-domain of the Fractional-Laplacian operator in terms of certain weighted Sobolev spaces introduced in (Babuška and Guo, SIAM J. Numer. Anal. 2002). The present theoretical treatment relies on a full eigendecomposition for a certain weighted integral operator in terms of the Gegenbauer polynomial basis. The proposed Gegenbauer-based Nyström numerical method for the Fractional-Laplacian Dirichlet problem, further, is significantly more accurate and efficient than other algorithms considered previously. The sharp error estimates presented in this paper indicate that the proposed algorithm is spectrally accurate, with convergence rates that only depend on the smoothness of the right-hand side. In particular, convergence is exponentially fast (resp. faster than any power of the mesh-size) for analytic (resp. in nitely smooth) right-hand sides. The properties of the algorithm are illustrated with a variety of numerical results.es
dc.description.sponsorshipBeca de Posgrado del CONICET, Argentina.es
dc.format.extent37 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherarXives
dc.relation.ispartofMathematics. Numerical Analysis (math.NA), arXiv:1608.08443v2, mar 2017, pp 1-37es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectFractional Laplacianes
dc.subjectHypersingular integral equationses
dc.subjectHigh order numerical methodses
dc.subjectGegenbauer polynomialses
dc.titleRegularity theory and high order numerical methods for the (1D)-fractional Laplacian.es
dc.typePreprintes
dc.contributor.filiacionAcosta Gabriel, Universidad de Buenos Aires, Argentina-
dc.contributor.filiacionBorthagaray Juan Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionBruno Oscar, California Institute of Technology, Pasadena, California-
dc.contributor.filiacionMaas Martín, Universidad de Buenos Aires, Argentina-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
ABBM17.pdfPreprint1,37 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons