Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/42646
Cómo citar
Título: | Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization |
Autor: | Canale, Eduardo Monzón, Pablo |
Tipo: | Preprint |
Palabras clave: | Linear stability analysis, Coupled oscillators, Dynamical systems, Kuramoto models, Measure theory, Euclidean geometries, Graph theory, Vector fields, Complex functions, Cell lines |
Fecha de publicación: | 2015 |
Resumen: | This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1-15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree-order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work. |
Descripción: | Trabajo publicado en Chaos. 25(2) 2015 |
Citación: | Canale, E, Monzón, P. "Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization" [Preprint] Publicado en: Chaos 25 (2), 2015 : 023106. https://doi.org/10.1063/1.4907952 |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
CM15.pdf | 331,68 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons