english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/36664 How to cite
Title: Towards a massively-parallel version of the SimSEE
Authors: Marichal, Raúl
Vallejo, Damián
Dufrechou, Ernesto
Ezzatti, Pablo
Type: Preprint
Keywords: Coarse-grained parallelism, Electric energy generation, Stochastic dynamic programming
Issue Date: 2021
Abstract: The SimSEE is a simulation software used/designed to aid the decision-making in the electric energy generation market. It is based on Stochastic DynamicProgramming technique and allows to simulate the contribution of several energy sources, such as hydro-electric, solar, thermal or wind energy, to a specific electrical network. Uruguay’s electric generation system has considerably grown and diversified in the past decades. This evolution implies potentially more complex scenarios and also motivates a more precise modeling of some electric sources. Therefore, the computational cost of the simulations is also expected to rise and the use of HPC techniques becomes mandatory. In this work we study the performance bottlenecks in the SimSEE tool. Additionally, and considering the previously mentioned results, we design a parallelization strategy that enables its acceleration using massively-parallel devices such as GPUs.
Description: 2021 IEEE URUCON, Montevideo, Uruguay, 2021, pp. 440-443.
Publisher: IEEE
Sponsors: Agencia Nacional de Investigación e Innovación. Proyecto ANII FSE_1_2018_1_153060
Citation: Marichal, R., Vallejo, D., Dufrechou, E. y otros. Towards a massively-parallel version of the SimSEE. [Preprint]. Publicado en: 2021 IEEE URUCON, Montevideo, Uruguay, 2021, pp. 440-443, DOI: 10.1109/URUCON53396.2021.9647142.
License: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Appears in Collections:Reportes Técnicos - Instituto de Computación

Files in This Item:
File Description SizeFormat  
MVDE21.pdfPreprint459,68 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons