
Towards a massively-parallel version of the
SimSEE

Raúl Marichal
Facultad de Ingenierı́a (INCO)

Universidad de la República
Montevideo, Uruguay
rmarichal@fing.edu.uy

Damián Vallejo
Facultad de Ingenierı́a (IIE)
Universidad de la República

Montevideo, Uruguay
dvallejo@fing.edu.uy

Ernesto Dufrechou
Facultad de Ingenierı́a (INCO)

Universidad de la República
Montevideo, Uruguay

edufrechou@fing.edu.uy

Pablo Ezzatti
Facultad de Ingenierı́a (INCO)

Universidad de la República
Montevideo, Uruguay
pezzatti@fing.edu.uy

Abstract—The SimSEE is a simulation software
used/designed to aid the decision-making in the electric
energy generation market. It is based on Stochastic Dynamic
Programming technique and allows to simulate the contribution
of several energy sources, such as hydro-electric, solar, thermal
or wind energy, to a specific electrical network. Uruguay’s
electric generation system has considerably grown and
diversified in the past decades. This evolution implies
potentially more complex scenarios and also motivates a more
precise modeling of some electric sources. Therefore, the
computational cost of the simulations is also expected to rise
and the use of HPC techniques becomes mandatory. In this
work we study the performance bottlenecks in the SimSEE
tool. Additionally, and considering the previously mentioned
results, we design a parallelization strategy that enables its
acceleration using massively-parallel devices such as GPUs.

Index Terms—Coarse-grained parallelism, electric energy
generation, Stochastic Dynamic Programming

I. INTRODUCTION

The SimSEE (Electric Power Systems Simulator) is a
software tool that allows for customized simulations of an
electric energy generation system. Its principal purpose is
to aid in the decision-making process both in the long
term (investment planning) and in the short term (system
operation and market simulation) [1]. It was developed at the
Universidad de la República, by engineers of the Instituto
de Ingenierı́a Eléctrica (IIE) of the Facultad de Ingenierı́a
(FING), between the years 2006 and 2008, keeping a con-
stant evolution since then [2], [3]. The software is multiplat-
form (currently for Windows and Linux) and is developed
entirely in the Pascal programming language. Additionally, it
is publicly available and open-source. One of its most heavy
users nowadays is ADME, an Uruguayan public agency in
charge of managing the electricity generation market in this
country.

The radical change experienced by the Uruguayan elec-
tricity generation matrix in the last decade, incorporating
an important capacity of wind and solar generation sources,
poses significant challenges for predicting demand and gen-
eration capacity in the short and medium-term to optimize
the use of the different sources available. For example, it
is of utmost importance to represent the electrical system
with higher accuracy. In other words, it is necessary to adapt
to the increase in the number of actors and complexity of

the system and, at the same time, maintain the levels of
precision.

To calculate the system’s cost function, the SimSEE
performs a discretization of the state space and time domain.
Then, it makes a backward sweep in the time domain,
minimizing the operating cost of each step (which equals
the cost of the step plus the future cost of the arrival state).
The computational cost of this operation is proportional to
the Cartesian product of the state variables of the problem,
so adding more of them or increasing their discretization can
make the problem impossible to solve, in a reasonable time,
using conventional tools. In this context, the need to adapt
the SimSEE to the possibilities offered by current parallel
computing platforms is evident.

Graphics Processing Units, or GPUs, are coprocessors
initially designed for image rendering. They mainly aim to
relieve the CPU load in applications with a high demand for
these types of operations, such as video games or simulations
with a high 3D content, among other things. In recent
years, several programming languages were developed to
allow using GPUs to compute general-purpose problems
such as simulations and numerical models that require great
computing power and are massively parallelizable [4]. The
most remarkable example in languages is CUDA, specially
tailored for Nvidia GPUs.

In this work, we firstly identify the performance bottle-
necks in the SimSEE tool. Later. we study how to adapt
the algorithms used in SimSEE to take advantage of the
computing power of massively parallel processors. These
algorithmic changes can enable the simulation of larger
and more refined scenarios while keeping the tool simple
regarding the coding of new models.

The rest of the paper is structured as follows. In Section II
we briefly review the SimSEE simulator. Next, in Section III,
we experimentally evaluate the baseline version of this tool.
After that, and considering the previously obtained results,
we design a new variant for the SimSEE that is described
in Section IV. Finally, Section V presents the concluding
remarks and an outline of future research.

II. THE SIMSEE TOOL

The SimSEE tool is distributed among various programs,
which allow the management of information in an orderly
manner. In turn, the information of the electrical system
configuration is grouped in what is known as a play room
or simply room. A SimSEE room is an input file where
the electrical system that will be simulated is described.
This description comprises aspects such as the number and
type of electrical generators, loads, time frames, generator
maintenance schedules, and forecasts generators, among
others. The generators of a certain room are called actors,
while the forecasts are called sources. The number of state
variables of a room equals the sum of the number of state
variables of its sources and actors . An example of state
variables is the one used for depicting the volume of water
in hydro generator’s reservoirs.

The use of SimSEE involves two main stages: optimiza-
tion and simulation. In the optimization process, the time
frame is swept inversely, solving the minimization problem
of the cost of each time step and for each point in the
space of the state variables. With this, a function of future
cost is built, which depends on time and the state. On the
other hand, simulation sweeps time forward and starts from
a given initial state. The execution of the simulation requires
performing the optimization first to obtain the cost function.
Additionally, stochastic processes such as water inflows
to reservoirs, wind speed, solar radiation, and generators
failures need to be considered during the simulation. For
this reason, in optimization as well as in simulation, many
chronicles are executed with different realizations of these
processes, and the results are generally expressed in terms
of the expected value or as distributions or probabilities of
exceedance.

In the course of this work, only the simulation process will
be considered (it should be noted that optimization variant,
from a computational point of view, is only an extension
of simulation counterpart). This process can be roughly
divided into different sections. An initialization part, where
the program reads the room file, creates all the instances,
lists, reads the cost function’s file created in the optimization
process, and prepares everything for the simulation to start.
Then, within the actual simulation (the baseline version),
two loops are distinguished, the chronicles loop and the time
steps loop. The simulator is programmed so that the outer
loop iterates through all the chronicles, while the inner loop
traverses the time steps of each chronicle. For each time step
of the simulation, an optimization problem is solved using
the Simplex algorithm. The Simplex method implemented in
the SimSEE is based on the work of Rutishauser et al. [5].

III. EXPERIMENTAL EVALUATION OF SIMSEE

As described in previous sections, the SimSEE is a large-
scale simulation and optimization tool. To improve the
performance of this simulator (or advance on the simulation
precision), we evaluate, for different case scenarios, the
computational cost of the functions and procedures involved
in the execution of the tool.

We use the callgrind/valgrind profiling tool [6]
in order to determine which units (set of functions and
procedures) involve more computational cost and also to
understand how the data flows through the simulation. The

addressed scenarios can be classified into three categories:
hourly, daily, and weekly (in other words, short, mid, and
long-term). For each of these test cases, we also vary some
of the parameters in the playrooms. We follow this strategy
in order to reach results with enough diversity, reducing the
bias in the evaluation that can arise from the particularities
of a certain dataset. In this context, we evaluate the most
costly operations for each combination of these cases and
variations. To depict the complexity of the SimSEE tool,
a graphical representation of the functions and procedures
according to their execution time for the daily case is shown
in Figure 1.

We start by evaluating the short-term (hourly) data set,
which includes actors whose state variables are the volume
of water in hydroelectric dam reservoirs. As we mentioned
earlier, with the goal to explore different scenarios we
created, in this case, three playrooms varying the water
volumes: dry, mid and humid.

Tables I, II and III summarize the obtained results for
each of the three scenarios, where each row displays the
percentage of execution, CPU cycles, number of invocations
and the unit comprising the most computationally expensive
procedures.

TABLE I
HOURLY DRY PLAYROOM.

Procedure Perc. (%) CPU Cycles Calls Unit
PASOBUSC... 5.7 2.902× 109 4.786× 105 USIMPLEX
INTERCAMBIAR 5.5 2.772× 109 1, 640× 106 USIMPLEX
RND 4.8 2.421× 109 7.457× 107 FDDP

TABLE II
HOURLY MID-HUMID PLAYROOM.

Procedure Perc. (%) CPU Cycles Calls Unit
PASOBUSC... 6.8 3.612× 109 5.942× 105 USIMPLEX
INTERCAMBIAR 4.9 2.584× 109 1.611× 106 USIMPLEX
RND 4.6 2.421× 109 7.457× 107 FDDP

TABLE III
HOURLY HUMID PLAYROOM.

Procedure Perc. (%) CPU Cycles Calls Unit
EROGADO... 10.5 6.949× 109 2.037× 105 UHIDRO...
VAL_X 9.0 5.929× 109 2.044× 108 COMPOL
PASOBUSC... 5.1 3.392× 109 4.977× 105 USIMPLEX
INTERCAMBIAR 4.6 3.030× 109 1.678× 106 USIMPLEX
RND 4.6 2.421× 109 7.457× 107 FDDP

Considering the results in Tables I and II the
top CPU-consuming procedure is, in the dry and
mid-humid cases and for the hourly simulations,
PASOBUSCARFACTIBLEIGUALDAD4. This procedure is
at the core of the Simplex algorithm computation, and its
purpose is to find the best feasible step or permutation in
the simplex matrix.

On the other hand, in the humid test case, Table III,
the procedure that concentrates the most runtime is
EROGADOMINIMO_CTRL_CRECIDA. This procedure is in-
voked when the water levels in the hydro reservoirs are very
close to the state variable upper bound, which is common in
the humid scenario.

Unlike the hourly playrooms, which only have hydraulic
actors, daily step playrooms also include wind and solar

Fig. 1. Graphical representation of the call tree of a daily playroom without
modifications. The area of each square is proportional to the runtime of the
corresponding procedure.

farms, which do not have any state variable associated.It
should be highlighted that this kind of playroom is the most
required by SimSEE users [7]. This case is formulated as
varying the number of solar and wind actors. Since these
actors do not have state variables, they can be grouped into
macro-actors with the same power generation. Tables IV, V
and VI summarize these experiments.

TABLE IV
DAILY PLAYROOM WITH NO MODIFICATIONS.

Procedure Perc. (%) CPU Cycles Calls Unit
PASOBUSC... 29.0 3.349× 1011 1.348× 106 USIMPLEX
LOCATE_ZPOS 20.3 2.344× 1011 5.991× 107 USIMPLEX
INTERCAMBIAR 15.4 1.780× 1011 8.258× 106 USIMPLEX
MEJORPIVOTE 6.1 6.991× 1010 5.972× 107 USIMPLEX
CAMBIO_V... 4.1 4.719× 1010 5.670× 1010 USIMPLEX

TABLE V
DAILY PLAYROOM WITH 20% MORE WIND ENERGY PRODUCTION.

Procedure Perc. (%) CPU Cycles Calls Unit
PASOBUSC... 27.6 3.672× 1011 1.348× 106 USIMPLEX
LOCATE_ZPOS 22.1 2.936× 1011 6.765× 107 USIMPLEX
INTERCAMBIAR 18.2 2.422× 1011 9.214× 106 USIMPLEX
MEJORPIVOTE 5.9 7.783× 1010 6.742× 107 USIMPLEX
CAMBIO_V... 3.5 5.252× 1010 6.401× 107 USIMPLEX

TABLE VI
DAILY PLAYROOM WITH ONLY ONE MACRO-ACTOR.

Procedure Perc. (%) CPU Cycles Calls Unit
PASOBUSC... 25.9 1.179× 1011 1.160× 106 USIMPLEX
INTERCAMBIAR 20.6 9.388× 1010 8.174× 106 USIMPLEX
LOCATE_ZPOS 8.6 3.909× 1010 2.455× 107 USIMPLEX
MEJORPIVOTE 6.2 2.819× 1010 2.418× 107 USIMPLEX
CREATE_CLONE 4.5 2.037× 1010 1.237× 107 MATREAL
CAMBIO_V... 3.8 1.730× 1010 2.076× 109 USIMPLEX

The results presented in previous tables show that there
are no essential differences for daily cases in terms of com-
putational cost. Again, it should be noted that USIMPLEX
is the unit with the most costly operations, particularly the
ones associated with the simplex resolution. However, if we
measure the impact of grouping all the non-state variable
actors for each simulation, as shown in Table VII, it can be
appreciated that there is a massive difference between the
elapsed time.

Finally, for the weekly playrooms, we study the impact on
the simulation of considering the occurrence of an issue in
the hydraulic generators. For this purpose, we modify the
probability of an incident in the range between 0.01 to 0.15.
Tables VIII and IX sintetize these experimental evaluations.

TABLE VII
ELAPSED TIME (IN SEC.) OF DAILY PLAYROOM SIMULATIONS.

Playroom Elapsed time (s)
Daily with no modifications 158.133
Daily with 20% more wind energy production 178.024
Daily with only one macro-actor 61.713

TABLE VIII
WEEKLY PLAYROOM WITHOUT MODIFICATIONS.

Procedure Perc. (%) CPU Cycles Calls Unit
_INV_DIST... 12.4 2.788× 1010 3.302× 107 UDISNORMCAN
PASOBUSC... 12.1 2.726× 1010 1.030× 106 USIMPLEX
INTERCAMBIAR 11.2 2.518× 1010 4.702× 106 USIMPLEX
LOCATE_ZPOS 6.1 1.367× 1010 1.495× 107 USIMPLEX
MEJORPIVOTE 2.5 5.532× 109 1.482× 107 USIMPLEX
_CALCULAR_XS 2.2 5.042× 109 6.450× 104 UESCLA...

TABLE IX
WEEKLY PLAYROOM WITH CORRECT FUNCTION PROBABILITY OF 85%

OR BREAK PROBABILITY OF 15%.

Procedure Perc. (%) CPU Cycles Calls Unit
_INV_DIST... 12.5 2.788× 1010 3.302× 107 UDISNORMCAN
PASOBUSC... 12.2 2.721× 1010 1.031× 106 USIMPLEX
INTERCAMBIAR 10.8 2.413× 1010 4.639× 106 USIMPLEX
LOCATE_ZPOS 6.1 1.356× 1010 1.484× 107 USIMPLEX
MEJORPIVOTE 2.4 5.461× 109 1.471× 107 USIMPLEX
_CALCULAR_XS 2.3 5.042× 109 6.450× 104 UESCLA...

Results for weekly simulations show that there are not
much differences in runtimes where the probability of an
issue in a generator is varying. It should be noticed that,
again, USIMPLEX procedures represent a strong impact into
the runtime of the whole simulation, around 30%.

From the obtained results, we can state that the
operations–procedures that require a large percentage of the
total runtime of these simulations are from USIMPLEX unit.
This unit is in charge of representing and solving the simplex
method. Additionally, the considerable computational cost of
the previous experiments is mainly due to the vast number
of simplex solutions required and not to the cost of each
solution. In other words, the dimension of each problem
(simplex resolution) is negligible regarding their solution in
modern massively-parallel devices.

IV. DESIGN OF A PARALLEL VERSION OF SIMSEE

After the experimental evaluation stage (previous section),
we can conclude that none of the functions or procedures
have a computational cost that can represent a critical
bottleneck. In other words, none of the procedures can be
significantly optimized to improve the total runtime. This
situation allows discarding the use of fine-grain parallelism
as a promising approach to accelerate the model. Therefore,
we propose a different strategy, based on leveraging the
coarse-grain parallelism [8] to adapt the execution of Sim-
SEE simulations to massively parallel devices, like GPUs.

Instead of concentrating on optimizing a particular opera-
tion by exposing parallelism, the new approach implies mod-
ifying the whole computational structure of the simulation.
The main idea is to compute many independent trajectories
concurrently, executing multiple instances of resolver or,
equivalently, solving multiple simplex matrices in parallel.

Initially, the simulation can be simplified into two main
loops. As mentioned in Section II, the outer loop iterates
through the trajectories or chronicles, and for each of these

TABLE X
ESTIMATED TIME OF ONE STEP, FOR EACH STAGE OF THE PARALLEL

PROPOSAL FOR DIFFERENT NUMBER OF TRAJECTORIES.

of Initialize HtoD DtoH Total Total + GPU
Chronicles structures transf. transf. transf. res. time
1 0.05 0.07 0.07 0.19 2.19
32 1.50 1.39 1.70 4.59 6.59
64 3.01 2.71 3.32 9.04 11.04
128 6.02 5.48 6.70 18.19 20.19
512 24.06 22.23 27.17 73.47 75.47
1024 48.13 43.57 53.25 144.94 146.94

trajectories, there is a loop that solves a simplex matrix
of each time step. As each trajectory is independent, we
redesign the algorithm to solve for the different trajectories in
parallel in each step. Concretely, we parallelize the solution
of several simplex matrices, one for each trajectory.

To validate that this is a reasonable strategy, we estimate
the cost of initialization, pre-processing, solving (multiple
simplex matrices), and post-processing the results. The eval-
uation can be divided into CPU and GPU estimations. For
the CPU original version, we first isolate the resolution step,
measuring the cost of a simplex instance. For the current
CPU implementation, this cost is ∼ 1ms. Then, we scale
that time to estimate the cost of solving multiple trajectories.

From the GPU side, we need to measure the cost of
transferring the data required to compute the corresponding
number of trajectories. Additionally, the GPU resolution
involves other stages. For example, the initialization stage
includes invoking the GPU driver and memory allocation,
both only needed once before starting the simulation. Inside
the simulation step, a pre-processing phase rearranges the
input data, organized in SimSEE’s object-oriented data struc-
tures, to a more GPU-friendly data layout for the parallel
solution of the simplex. Then, the resulting data structures
are transferred from the CPU to the GPU memory (through
a cudaMemCpy command). Solving the multiple simplex
matrices associated with different trajectories on the GPU
side in parallel is the main stage of the method, whose cost
should be comparable to solving one step in CPU. The last
stage, post-processing, consists of transferring the data back
to the CPU with the solution and updating the original data
structures. These values for different groups of chronicles,
with the number of chronicles varying between 1 and 1024,
are summarized in Table X. The results show that the time
for the data transferences is less than the CPU simplex
computations, especially when the number of chronicles
grows. For largest scenario, the difference in runtime is in
the order of 8× in favour of the new paradigm.

V. CONCLUDING REMARKS AND FUTURE WORK

In this work, we have evaluated the computational perfor-
mance of SimSEE, a computational tool aimed at assisting
in decision-making in the electric energy generation market.

In order to pursue our objectives, we design different
realistic test cases, grouped in three different classes: hourly,
diary, and weekly scenarios. The experimental evaluation
suggests that none of the procedures represent an important
bottleneck from a computational point of view. Contrary, the
enormous number of invocations of some specified routines
configures the main challenge.

Considering the previously described situation, we ad-
vance with the design of a parallel version to optimize the
SimSEE runtimes. In particular, we depart from the idea of
including fine-grain parallelism to focus on a coarse-grain
approach. In this line, we preliminarily evaluate and validate
the conditions to apply this kind of strategy and complete
a design of the data structures and the main workflow of a
new parallel variant of the SimSEE tool.

As future work, we identify several lines. Firstly, we
need to implement and experimentally evaluate versions of
the new module for different parallel hardware platforms,
such as traditional multi-core CPUs, ARM multi-core CPUs,
and GPUs. Another essential aspect that was not covered
in the present effort is leveraging distributed platforms,
especially considering the scaling in the dimension of the
addressed problems. Finally, it is interesting to develop a
procedure to automatically select, considering the targeted
problem characteristics, the best version-hardware platform
to perform the simulations.

ACKNOWLEDGMENT

The authors of this article were partially financed by
project ANII FSE 1 2018 1 153060.

REFERENCES

[1] E. Coppes, C. Tutté, F. Maciel, M. Forets, E. Cornalino, and R. Chaer,
“SimSEE Proyecto ANII FSE 2009 18 Mejoras a la plataforma Sim-
SEE,” 2012.

[2] G. Flieller and R. Chaer, “Introduction of ensemble based forecasts
to the electricity dispatch simulator simsee,” in 2020 IEEE PES
Transmission & Distribution Conference Latin America (T&D LA),
pp. 1–6, IEEE.

[3] V. Camacho and R. Chaer, “Hourly model of a combined cycle power
plant for simsee,” in 2020 IEEE PES Transmission & Distribution
Conference and Latin America (T&D LA), pp. 1–5, IEEE, 2019.

[4] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel
processors: a hands-on approach. Morgan kaufmann, 2016.

[5] H. Rutishauser, M. Gutknecht, W. Gautschi, H. Schwarz, P. Henrici, and
P. Läuchli, Lectures on Numerical Mathematics. Birkhäuser Boston,
1990.

[6] J. Weidendorfer, “Sequential performance analysis with callgrind and
kcachegrind,” in Tools for High Performance Computing, pp. 93–113,
Springer, 2008.

[7] “Usos del SimSEE.” https://www.simsee.org/simsee/usos.html. Ac-
cessed: 2021-07-31.

[8] J. I. Aliaga, E. Dufrechou, P. Ezzatti, and E. S. Quintana-Ortı́, “Ac-
celerating the task/data-parallel version of ILUPACK’s BiCG in multi-
CPU/GPU configurations,” Parallel Comput., vol. 85, pp. 79–87, 2019.

