english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/53420 Cómo citar
Título: Automatic wood pith detector : Local orientation estimation and robust accumulation
Autor: Marichal, Henry
Passarella, Diego
Randall, Gregory
Tipo: Preprint
Palabras clave: Computer vision, Wood pith detection, Deep neural network object detection, Wood quality
Fecha de publicación: 2025
Resumen: A fully automated technique for wood pith detection (APD), relying on the concentric shape of the structure of wood ring slices, is introduced. The method estimates the ring's local orientations using the 2D structure tensor and finds the pith position, optimizing a cost function designed for this problem. We also present a variant (APD-PCL) using the parallel coordinate space that enhances the method's effectiveness when there are no clear tree ring patterns. Furthermore, refining Kurdthongmee's work, a YoloV8 net is trained for pith detection, producing a deep learning-based approach (APD-DL). All methods were tested on seven datasets, including images captured under diverse conditions (controlled laboratory settings, sawmill, and forest) and featuring various tree species (Pinus taeda, Douglas fir, Abies alba, and Gleditsia triacanthos). All proposed approaches outperform existing state-of-the-art methods and can be used in CPU-based real-time applications. Additionally, we provide a novel dataset comprising images of gymnosperm and angiosperm species. Dataset and source code are available at http://github.com/hmarichal93/apd.
Financiadores: Beca doctorado ANII
Citación: Marichal, H., Passarella, D. y Randall, G. Automatic wood pith detector : Local orientation estimation and robust accumulation. [Preprint] Publicado en: Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15317, Springer, Cham, 2025, pp. 1-15. DOI: 10.1007/978-3-031-78447-7_1.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imágenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MPR25.pdfPreprint18,88 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons