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Abstract. A fully automated technique for wood pith detection (APD), relying
on the concentric shape of the structure of wood ring slices, is introduced. The
method estimates the ring’s local orientations using the 2D structure tensor and
finds the pith position, optimizing a cost function designed for this problem. We
also present a variant (APD-PCL), using the parallel coordinates space, that en-
hances the method’s effectiveness when there are no clear tree ring patterns. Fur-
thermore, refining previous work by Kurdthongmee, a YoloV8 net is trained for
pith detection, producing a deep learning-based approach to the same problem
(APD-DL). All methods were tested on seven datasets, including images captured
under diverse conditions (controlled laboratory settings, sawmill, and forest) and
featuring various tree species (Pinus taeda, Douglas fir, Abies alba, and Gleditsia
triacanthos). All proposed approaches outperform existing state-of-the-art meth-
ods and can be used in CPU-based real-time applications. Additionally, we pro-
vide a novel dataset comprising images of gymnosperm and angiosperm species.
Dataset and source code are available at http://github.com/hmarichal93/
apd.

Keywords: Computer vision · Wood pith detection · Deep neural network object
detection · Wood quality

1 Introduction

Locating the pith of tree cross-sections is essential to identify (in basal discs) the first
year of growth and, therefore, the tree’s age. The pith has a different type of tissue
than the rest of the tree, with distinct physical-mechanical properties. Locating the pith
is useful, among other reasons, to detect growing eccentricity; because in the natural
process of senescence of standing trees, the fungi that degrade the wood enter through
the pith or because the industry discards that part as it has different uses than the rest
of the wood. Moreover, some tree ring delineation algorithms are sensitive to a pre-
cise pith location Cerda et al. [2007], Makela et al. [2020], Marichal et al. [2023b],
Norell [2009], mainly when those algorithms are based on the ring structure, a concen-
tric pattern similar to a spider web as illustrated in Figure 1. That figure shows some
examples of the diversity of images of tree slices. Ideally, the intersection point between
the perpendicular lines through the tree rings should be the pith (the center of the struc-
ture, located inside the medulla of the tree). The spider web model is only a general
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approximation, as it is depicted in Figure 1.d. Real slices include ring asymmetries,
cracks, knots, fungus, etc., as seen in Figure 1.b and Figure 1.c. Different species pro-
duce diverse patterns. Moreover, gymnosperm, as the ones illustrated in Figure 1, and
angiosperm species produce a different wood structure, as seen in Figure 6.e. Automatic
pith detection must be robust to such variations and perturbations.

(a) F02d (b) F03d (c) F07e (d) Spider web

Fig. 1: (a) to (c) Some examples from UruDendro datasetMarichal et al. [2023a], (d)
The whole structure, called spider web, is formed by a center (the slice pith), rays, and
the rings (concentric curves). In the scheme, the rings are circles, but in practice, they
can be (strongly) deformed as long as they don’t intersect another ring.

This paper presents several key contributions: the release of a new challenging
dataset (UruDendro2 and UruDendro3) for wood pith detection, the development of
real-time automatic detection methods (APD and APD-PCL), training of a YoloV8 net
(APD-DL) for the same purpose, and rigorous comparison with state-of-the-art methods
on various public datasets. These contributions enhance the field of wood pith detection,
offering practical solutions and insights for real-time applications.

2 Previous work

Schraml and Uhl et al. Schraml and Uhl [2013] proposed a method (here called LFSA)
that splits the wood cross-section into patches, estimating the patch’s orientation by 2D
Fourier Transform. They accumulate the patch’s orientation using a Hough Transform
approach and estimate the pith position as the maximum in the accumulation space.

Kurdthongmee et al. Kurdthongmee et al. [2018] proposed the Histogram Orienta-
tion Gradient to estimate the tree ring local orientation and proceed similarly to Schraml
and Uhl [2013]. In the same line, Norell et al. Norell and Borgefors [2008] proposed
two ways for estimating the local orientations: quadrature filters and a Laplacian pyra-
mids approach. Recently, Decelle et al. Decelle et al. [2022] proposed ACO, a method
based on an ant colony optimization algorithm for the local orientation accumulation
step.

Deep Neural Network (DNN) methods have also been applied to solve this problem.
Kurdhongmeed et al. Kurdthongmee [2020] compared the effectiveness of two DNN
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object detector models (YoloV3 and SSD MobileNet) to locate the pith. They trained
the models via transfer learning over 345 wood slice RGB images captured within a
sawmill environment and evaluated over a separate dataset of 215 images.

3 APD: Automatic Wood Pith Detection

We propose an automatic pith detection method based on a model of the wood slice. In
a gymnosperm tree cross-section, as the ones shown in Figure 1, two types of structures
are present: the rings formed by (roughly) concentric curves and (in some cases) the
presence of radial structures such as cracks and fungi. Both are fundamentally related
to the pith. The former is due to the growing process of the tree, which forms the rings,
and the latter is because the tree’s anatomy leads naturally to the radial characteristic
of cracks and fungus growing. From this observation derives the principal idea of the
proposed method: giving an image of a tree cross-section, we can locate the pith at
the intersection of the lines supported by radial structures and the perpendiculars to the
rings.

The angiosperm tree cross-section structure is slightly different, as seen in Figure 6e.
Still, it is also formed of radially organized cells, with texture patterns that appear at
different radii of the pith. This produces visual macrostructures that allow a similar
approach to determine the pith position as depicted in the previous paragraph.

Not always do those hypotheses stand out completely. Sometimes, the ring struc-
ture can be highly (locally) deformed, as in the presence of a knot. Sometimes, there
are no cracks or fungi present. But in general, enough information is produced by the
ring structure and, eventually, by the presence of cracks and fungi to estimate the pith
location correctly.

Given an image of the tree cross-section, and using the spider web model illustrated
in Figure 1.d, the APD approach pseudocode is described at Algorithm 1. The main
steps are the following (see Figure 3 for more details):

1. Local orientation detection (line 1 of Algorithm 1). To estimate the local orien-
tation (LO), we compute the 2D-Structure Tensor Bigun et al. [1991] S T [p] at
each pixel p using a window of size stw × stw. Pixels in the window are weighted
by a Gaussian kernel w of parameter stσ. The structure tensor is calculated as
S T [p] =

∑
r w[r]S Txy[p − r] where S Txy[p] is defined as

S Txy[p] =
[

(Ix[p])2 Ix[p]Iy[p]
Ix[p]Iy[p] (Iy[p])2

]
where Ix[p] and Iy[p] are the first derivatives of image I in point p along x and y,
respectively. For simplification, we can re-write the 2 × 2 structure tensor matrix at
pixel p as:

S T [p] =
[
J11 J12
J12 J22

]
The local orientation at pixel p is:

S TO[p] =
1
2

arctan(
2J12

J22 − J11
) (1)
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Algorithm 1: APD
Input: Imin, //RGB slice image;
Output: Pith location

1 S TO, S TC ← local_orientation(Imin, stσ, stw)
2 LO f ← lo_sampling( S TO, S TC , low, percentLO)
3 LOr ← LO f

4 for i in 1 to max_iter do
5 if i > 1 then
6 LOr ← filter_lo_around_ci(LO f , r f , ci), // See Figure 3.e

7 ci+1 ← optimization(LOr) // Equation (4)
8 if ∥ci+1 − ci∥2 < ϵ then
9 ci ← ci+1

10 break

11 ci ← ci+1

12 return ci

The coherence of the LO estimation in p is given by the relative value of eigenval-
ues λ1 and λ2 (where λ1 is the largest eigenvalue, and λ2 is the smallest one):

S TC[p] =
(
λ1 − λ2

λ1 + λ2

)2

(2)

The outputs of this step are two matrices: one of local orientations (S TO) and one
of coherence (S TC).

2. Local orientation sampling (line 2 of Algorithm 1). The LO estimations are sampled
in the following way: 1) S TO and S TC are divided in non-overlapping patches of
size low×low. 2) We find the pixel p j with the highest coherence (c j

high) within patch
patchi. A minimum patch coherence stth is defined. We assign S TO[p j] to patchi

in position p j, if c j
high > stth. To fix stth, we calculate the value of S TC such that

a given percentage (parameter percentLO) of the LO in the slice has S TC > stth.
Each LO is a segment loi = pi

1 pi
2, defined by the limits pi

1 and pi
2. pi

LO is the middle
point between them (p j). Given the local orientation αi = S TO[pi

LO], points pi
1 and

pi
2 are computed as pi

1,2 = pi
LO ± (cos(αi), sin(αi)).

Suppose N patches have coherently enough LO; the output of the step is a matrix,
LO f of size N × 4. In this way, lines are supported by the LO of all meaningful
structures in the cross-section, such as the rings.

3. Find the center (line 7 of Algorithm 1). Given the filtered local orientation matrix,
LO f , we define the following optimization problem: find copt, the geometrical po-
sition that maximizes the collinearity between the loi and a line passing by copt and
pi

LO. To this aim, we define the following cost function:

h(x, y) =
1
N

N∑
i=1

cos2(θi(x, y)) (3)
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Figure 2 illustrates the vectors involved in computing Equation (3). The angle be-
tween pi

1 pi
2 and cpi

LO is θi. The pith position c of coordinates (x,y) is the origin of a

segment cpi
c. As cos(θi(x, y)) = <cpi

LO,p
i
1 pi

2>

|cpi
LO ||p

i
1 pi

2 |
, the optimization problem to be solved

becomes:

copt = max
c

1
N

N∑
i=1

< cpi
LO, p

i
1 pi

2 >

|cpi
LO||p

i
1 pi

2|


2

s.t. c ∈ S lice Region

(4)

4. To find the global maximum (copt) of the former optimization problem, we use the
minimize method from scipy.optimize python package with its default parameters.
Problem 4 is convex if it is restricted to the region of the wood cross-section. There-
fore, as initialization to the minimize method, we use the least squares solution of
finding the point cini, which minimizes the distance to all the lines in LOr within
the slice.

5. Refinement (lines 4 to 11 of Algorithm 1). Once a candidate for the pith location copt

is obtained, the optimization procedure (4) is repeated using only the local orienta-
tions within a squared region of size S izeimage/r f centered in copt (see Figure 3.e).
This step is repeated until the pith location doesn’t move more than a given tol-
erance (ϵ = 10−5) or the iteration counter reaches max_iter = 5. This approach
avoids distortions introduced by a (very) asymmetric tree ring growth pattern.

Fig. 2: Cost function definitions

4 APD-PCL: PClines based Automatic Wood Pith Detection

The APD method described in Section 3 works fine when the ring structure gives
enough information. In some (rare) cases, the ring structure is not visible due to fungi
or other perturbations. In those cases, it is possible to solve the same problem using the
lines supported by the radial structure of those perturbations in addition to the lines pro-
duced by the ring structure. For this reason, the APD-PCL version of the method is more
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Principal steps of APD method (L04d image from UruDendro2 collection). (a)
Resized slice image, without background; (b) Sampled LO produced by the Structure
Tensor estimation; (c) Accumulation space defined by the LO supported lines; (d) Plot
of the cost function (Equation (3)), highest values in yellow; (e) Sub image built around
the solution c1 obtained after the first iteration; (f) Evolution of ci. The final solution is
in blue; previous iterations’ solutions are in red.

robust and allows for the successful treatment of cross-sections with highly degraded
ring patterns. The price to pay is a slower algorithm, as it includes a RANSAC-based
clustering step.

The APD-PCL method selects which local orientations to consider in the optimiza-
tion problem of Equation (4). In general, the estimation made by the structure tensor
calculation step is determined by the rings. Different perturbations also produce some
LO, but its number is minimal, and the lines they support don’t converge to the pith.
In some (rare) cases, the perturbations are so important that they overshadow the ring
structure. In those cases, the number of LO produced by the perturbations is more sig-
nificant than those produced by the ring structure. The set of perturbations-related local
orientations can be of diverse origin: knots, fungi, cracks, and noise. Some of them
(namely fungi and cracks) have a typical radial orientation, so the perpendicular lines
to its LO converge to the pith.

Considering this, we modify Algorithm 1, by including a post-processing step over
matrix LO f , between lines 2 and 3. The rest of the algorithm is the same:

1. Use the PClines transform Dubska et al. [2011] to convert each line into a point.
2. The PClines space is formed by two sub-spaces defined by a parameter d: the

straight space includes lines with orientations αi ∈ [0, π2 ] and the twisted space
lines with orientations αi ∈ [ π2 , π]. As seen in Figure 4, convergent lines in the Eu-
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clidean space correspond to aligned points in the PClines spaces. This allows the
following steps:
(a) Lines supported by LO produced by the ring structure converge somewhere

around the pith. They produce a line-shaped cluster in the PClines spaces (fig-
ures 4b and 4c). We select the aligned points using a RANSAC Fischler and
Bolles [1981] approach. We work only in the [−d, 0] and [0, d] ranges for the
twisted and straight sub-spaces, respectively. This avoids the use of points near
the infinity. We select all the converging lines in both spaces, excluding those
simultaneously selected in both sub-spaces.

(b) The previous step clusters all convergent LO f in the image producing the set
LOring. We rotate by 90 degrees all the orientations in LO f and repeat the pre-
vious procedure to detect the converging ones. These rotated converging lines
cluster, LOradial, is produced by cracks, fungi, or similar structures. Adding
both gives the set:

LOPClines
f = LOring + LOradial

.
(c) To make the line segment selection method more robust, we add a third PClines

transform using the lines supported by LOPClines
f . Most ring-related LO and

rotated LO generated by radial structures are expected to converge (hence, to
form a line cluster in the PCline space). Therefore, most of the outliers should
be removed at this step.

(a) (b) (c) (d)

Fig. 4: Use of PClines to cluster converging local orientations for slice F07e (same
as Figure 1c). (a) Local orientations; (b) Selection of the converging segments in the
twisted space using RANSAC to fit a line (in red). Inliers are colored in green; (c) The
same procedure is applied in the straight space; (d) In blue, the converging LO (inliers
from both sub-spaces) and the LO to be removed in red.

Figure 5 illustrates the considered lines and the accumulation space of Equation (3)
without and with the PClines step. Note how the method filters out many non-convergent
lines and regularizes the cost function.

The APD-PCL method is similar to the APD one, but the PClines-based filtering
step diminishes the number of considered lines, filtering out many non-convergent ones.
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(a) (b) (c) (d)

Fig. 5: LO Accumulation space and cost function for slice F07e with and without apply-
ing the PClines filtering method. (a) LO Accumulation space with no filtering; (b) cost
function of LO with no filtering; (c) LO Accumulation Space with PClines filtering; (d)
cost function of LO with PClines filtering

5 APD-DL: Deep Learning based Automatic Wood Pith Detection

In Sections 3 and 4, we tackle the pith detection problem using a (spider web) model, as
in the "classic" image processing times. Now, we present a Deep-learning approach that
learns the model from the data. To this aim, Kurdthongmee et al. Kurdthongmee and
Suwannarat [2019] used a YoloV3 model. Inspired by them, we train a YoloV8 Jocher
et al. [2023] network using the datasets described in Section 6. This is an architecture
tailored for object detection and segmentation. To train it, we must provide a set of data
formed by wood cross-section images labeled with the ground truth position of the pith
as a bounding box.

We use a five-fold cross-validation technique. We divide the data into five sets. In
each fold i, we use one set (testi) for testing and the other four for training. The training
process in each fold is done as usual, and we use the produced model to label the data
in testi. The process is repeated for all the folds. In the end, we have predictions for all
the data, and in each case, the used model was generated without the influence of the
testi data. With the predictions for all images produced in this manner, we can deliver
the metrics to determine the method’s performance.

Table 1 show the results using normalized errors (see Section 7.2). Training with
such a high diversity of data produces state-of-the-art results. Results over each row
(collection) are calculated using the predictions produced during the five-fold cross-
validation with all the images in the seven datasets. In some (rare) cases, this approach
doesn’t give a prediction (hence a false negative). In those situations, the method gives
the center of the image as the pith position. This explains the (relatively) large value of
the Maximum error and the differences between the Mean and Median errors. Besides
the rare false negatives, the results are excellent. The last row depicts the results for all
the collections.

Hyperparameters The algorithm was trained with images of width size 640 (keeping
the aspect ratio), using a batch size of 16, for 100 epochs, with the optimizer AdamW
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Collection Mean (Std) Median Max FN
Uru2 0.55 (1.45) 0.18 11.32 2
Uru3 0.13 (0.06) 0.13 0.27 0
Kennel 0.14 (0.07) 0.13 0.24 0
Forest 0.45 (1.85) 0.12 13.91 0
Logyard 0.52 (1.29) 0.27 7.51 0
Logs 0.22 (0.46) 0.13 4.42 1
Discs 0.23 (0.54) 0.14 5.67 0
All 0.33 (1.01) 0.14 13.91 3

Table 1: Prediction results of 5-fold cross-validation for the APD-DL. The second to
fourth columns show the Mean (and standard deviation in parenthesis), Median, and
Maximum normalized error (defined in Section 7.2) values. The last column shows the
false negatives. We use all the datasets together for train the model and calculate the
performance within each dataset.

Loshchilov and Hutter [2019] (lr = 0.002, momentum = 0.9) and yolov8n as pre-trained
weights. All the network was re-trained.

6 Datasets description

We use the following datasets:

– UruDendro. We introduce here a new public dataset with two collections of wood
cross-section samples with experts annotated ground truth Marichal et al. [2023a]:
• UruDendro2: 119 RGB images of Pinus taeda slices. This collection includes

64 images taken under different illumination conditions and cameras, published
in 2022 in our website Marichal et al. [2023a], increased with 55 new images.
The new images were taken in laboratory conditions, with an iPhone 6S phone
(12 Mpx camera) at a distance between 43 and 51 cm from the slice, under
controlled illumination with a led ring of 35 W. Size images range between
1000 and 3000 pixels in width.The surface of the slices presented different
conditions: some were cut by chainsaw, smoothed by a handheld planner, and
polished with a rotary sander. All these images are annotated by at least one
expert with the position of the pith.

• UruDendro3: 9 RGB images of Gleditsia triacanthos, an angiosperm, acquired
in a laboratory, without illumination-controlled conditions, using a Huawei P20
Pro smartphone (24 Mpx camera) at a distance of approximately 1 meter from
the slice. Size images range between 1000 and 2000 pixels in width. All the
slices were polished. All these images are annotated by at least one expert with
the position of the pith.

– Kennel Kennel et al. [2015]. A public dataset with 7 RGB 1280 pixels squared
images of Abies alba, polished and acquired in controlled illumination laboratory
conditions. The pith pixel location is provided as metadata.
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(a) Forest (b) Longyard (c) Logs

(d) Disc (e) Uru3 (f) Kennel

Fig. 6: Examples of the used datasets. Species are (a-d) Douglas fir, (e) Gleditsia tri-
acanthos, (f) Abies alba. Acquisition conditions: (a-c) in the field, with a smartphone
camera; (d-e) in the laboratory, with controlled illumination. The samples of images (d-
e) were previously sanded and polished. The samples of images (a-c) didn’t have any
special treatment.

– TreeTrace Longuetaud et al. [2022]. A public dataset, with samples of Douglas fir
taken at different stages of the wood process chain. The pith pixel location is pro-
vided as metadata. Each image has several wood slices. To build the collections,
we extract sub-images containing one slice each, producing almost squared images
between 1000 and 3000 pixels in width. This dataset includes the following collec-
tions:
• Forest, 57 RGB images taken from the freshly cut logs with a digital camera.
• Logyard, 32 RGB images of the same log ends, acquired with a smartphone in

the sawmill courtyard several days after the cutting.
• Logs, 150 RGB images acquired in the sawmill with a smartphone.
• Discs, 208 RGB images acquired with a 400 dpi scanner from sanded and

polished slices after several weeks of air-drying.

Table 2 summarize the used datasets. Figure 1 show images from the UruDendro2
dataset, and Figure 6 show examples from the other collections. These datasets convey
a high degree of variability. It includes examples of gymnosperm (Pinus taeda, Abies
alba and Douglas fir) as well as angiosperm (Gleditsia triacanthos). Acquisition con-
ditions are also diverse, including images obtained with a smartphone in the forest or
the sawmill. Samples were acquired in the field with dirt, sap, or saw marks, and oth-
ers were obtained in controlled illumination conditions in the laboratory from polished
samples. The samples include perturbations as the presence of fungi, cracks, and knots,
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Collection Size Specie
UruDendro2 119 Pinus taeda
UruDendro3 9 Gleditsia triacanthos
Kennel 7 Abies alba
Forest 57 Douglas fir
Logyard 32 Douglas fir
Logs 150 Douglas fir
Discs 208 Douglas fir

Table 2: Dataset description.

as can be seen in Figure 1 and sap and saw marks, as can be seen in Figure 6.b and
Figure 6.d. All have the ground truth position of the pith. Considering all datasets, we
work with 582 images.

7 Results and discussion

UruDendro2 UruDendro3 Kennel Forest Logyard Logs Discs
LFSA Schraml and Uhl [2013] 1.03 (0.85) 1.46 (0.97) 0.42 (0.18) 0.80 (0.36) 1.02 (0.62) 0.80 (0.46) 0.72 (0.43)
ACO Decelle et al. [2022] 2.23 (6.64) 4.52 (11.96) 0.2 (0.06) 0.24 (0.24) 0.60 (1.11) 0.46 (0.45) 0.24 (0.35)
APD-PCL 0.42 (0.34) 0.74 (0.54) 0.19 (0.10) 0.81 (0.98) 0.82 (0.84) 0.52 (0.47) 0.46 (0.57)
APD 1.02 (2.45) 0.55 (0.30) 0.14 (0.06) 0.22 (0.18) 0.35 (0.17) 0.29 (0.33) 0.26 (0.42)
APD-DL 0.55 (1.45) 0.13 (0.06) 0.14 (0.07) 0.45 (1.85) 0.52 (1.29) 0.22 (0.46) 0.23 (0.54)
Table 3: Results on all the datasets. Normalized errors. We show the mean error and the
standard deviation between parenthesis.

7.1 Preprocessing

Sometimes, the images are acquired in the field with a smartphone camera, and one
image can contain more than one cross-section. Regardless of the method used, all
images are preprocessed in such a way as to standardize the image input:

1. Background substraction. Produce a new image limited to one slice. To this aim,
when possible, we filter out the background using the mask provided in the datasets.
If the mask is not provided, we use a deep learning-based method Qin et al. [2020],
which uses an U2Net to segment salient objects.

2. Resize the image. This step, not strictly necessary, allows us to fix the algorithm’s
parameters once and for all. All images are resized to 640 pixels width, respecting
the original image’s aspect ratio.
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7.2 Normalized errors

Given the cross-sections’ diverse dimensions, presenting the errors in pixels is not in-
formative. Additionally, not all the datasets provides the millimeter pixel relation. We
use the percentage of the equivalent slice radius. Given a prediction Pi and a Ground
Truth GTi, this error is calculated as follows:

Erri =
100 × Dist(Pi,GTi)

Equivalent_radio(imagei)

Where Dist(Pi,GTi) is the Euclidean distance, in pixels, between the prediction and
the Ground Truth. Remember that within this work, the pith is modeled as a point in the
image. Therefore Dist(Pi,GTi) is a distance between points. Equivalent_radio(imagei)
(in pixels) is half the biggest horizontal or vertical image size that circumscribes the
slice, without background, generated by the preprocessing.

7.3 Experiments

The method to fine-tune the APD-DL method is explained in Section 5. To determine
the best parameters’ values for LFSA, APD and APD-PCL we minimize overall used
datasets the average of Euclidean distances between ground truth and predictions.

For the APD and APD-PCL methods, the parameters stσ, r f and ransac_outlier_th
were set after experiments over a few images. Therefore, they are considered as fixed.
The rest of the parameters, percentLO, stw and low were set following the procedure
described in the former paragraph. The search of the minimum was over the following
grid: percentLO in [0.3, 0.5, 0.7, 0.9], stw in [3, 7, 9, 11] and low in [3, 7, 9, 11].

Inferences were made using an Intel Core i5 10300H workstation with 16GB and a
GPU GTX1650 (when needed).

7.4 Results

In this section, a performance comparison is made between the different methods. Ta-
ble 3 show the performance of the proposed methods and two state-of-the-art ones De-
celle et al. [2022], Schraml and Uhl [2013], over the datasets presented in Section 6.
We use the mean error and standard deviation, using normalized errors, to compare
different-size wood cross-sections. The performance of the methods differs for each
collection due to its specific characteristics regarding species, acquisition conditions,
etc. Note that ACO was developed (and tailored) for the TraceTree collections. Its per-
formance degrades when tried on other species (such as UruDendro collections). LFSA
performance is more regular across collections. The three methods proposed in this pa-
per outperform ACO and LFSA on all collections. APD and APD-DL perform better for
almost all collections. APD outperforms APD-PCL for all collections except UruDen-
dro2, which has some images with fungi and cracks overshadowing the ring structure.
Note that in all the cases, the precision of the pith detection is very high.

Table 4 compares the performance of all tested methods using the 582 images of all
collections. All methods presented in this paper outperform LSFA and ACO methods.
The APD performance is surpassed only by the APD-DL method but at the cost of some
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Method Mean Median Max FN Time
LFSA Schraml and Uhl [2013] 0.83 0.72 5.03 0 627
ACO Decelle et al. [2022] 0.79 0.21 36.39 2 918
APD-PCL 0.52 0.34 4.33 0 2339
APD 0.42 0.19 15.44 0 784
APD-DL 0.33 0.14 13.91 3 209

Table 4: Results of all the methods over the whole set of images, i.e., merging all collec-
tions. Normalized errors, number of false negatives, and execution time in milliseconds.

false negatives: images in which APD-DL didn’t find a solution. We can see that APD
slightly outperforms the APD-PCL method. This is due to the RANSAC algorithm used
to cluster points in the PClines space. When there is no clear clustering of points around
a line, RANSAC tries to fit a line anyway, selecting a wrong set of LO and producing a
wrong pith localization. This situation sometimes appears in the TreeTrace dataset. To
consider the mean processing time per image for each method, it must be considered
that APD-DL and ACO methods run on GPU, while APD, APD-DL, and LFSA run
on a CPU machine. Note that APD is roughly three times faster than APD-PCL. All
in all, it is remarkable that the "classic style" model-based proposed methods (APD
and APD-PCL) and a Deep Learning one (APD-DL) have similar performance and
execution times, allowing real-time applications with a CPU in the APD and APD-PCL
cases. In the supplementary material, we add showcases illustrating how the different
methods work under extreme conditions.

8 Conclusions and future work

This paper addresses the wood pith detection on tree slices problem using classic image
processing and machine learning-based approaches. Both approaches are determined
by the characteristics of the data used to tune the algorithm. In search of a more general
solution, we use a set of diverse datasets, which spans different species, acquisition
conditions, and perturbations (from cracks and knots to saw marks and dirt for images
acquired on the field).

We proposed three real-time methods. The first two are based on a spider web model
in a classic image processing approach, and the third one is a Deep Learning method.
The former has excellent performance, runs in real-time on a CPU-based machine, and
the model allows a clear comprehension of the approach. The limited number of param-
eters is understandable and can be fixed once and for all. The latter has better (although
similar) performance but has some false negatives and is more opaque concerning the
meaning of its millions of parameters. Moreover, it runs on a GPU based machine.

The UruDendro dataset, with annotated images of Pinus taeda (a gymnosperm) and
Gleditsia triacanthos (an angiosperm), are presented and can be used by the community
to test other approaches to this problem.
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9 Supplementary material

9.1 APD Parameters

The number of parameters in the machine learning approaches is huge, and they don’t
have a clear physical meaning. In the classic approaches, such as APD and APD-PCL
methods, a limited number of parameters are included, and they have a physical or
algorithmic meaning. The APD method has the following parameters, fixed once and
for all after a grid search with all the datasets. The default values are in parentheses:

– stσ: Structure tensor Gaussian σ (1.2).
– stw: Structure tensor Gaussian kernel size (3 for APD and 7 for APD-PCL).
– percentLO: to fix stth, the minimum coherence value to consider valid an LO (0.7).
– low: LO sampling window size (3 for APD and 7 for APD-PCL).
– r f : a factor used to estimate the side size of the search region for the iteration (7).

The APD-PCL method adds the following:

– ransac_outlier_th: RANSAC residual threshold defining the width of the line clus-
ter (0.03).

9.2 Methods comparison: difficult cases

Figure 7 illustrates how all the presented methods perform over the difficult cases in the
UruDendro2 collection. Figure 7.a to 7.c illustrates cases where the ACO method (red
marker) performs poorly. In one case, the method even predicts outside the disc region
(Figure 7.a). In this cases, the APD, APD-PCL and APD-DL (blue, yellow, and green
markers, respectively) perform similarly, all of them close enough to the ground truth
pith (the prediction is within the first tree ring region). On the other hand, the LFSA
method (purple marker) performs slightly worse.

Figure 7.d to 7.f show discs with a strong fungus presence around the pith position.
In this case, the APD-PCL (yellow marker) performs considerably better than the other
methods (in all cases, the prediction is within the first tree ring region). When there
is no tree ring information, the tree ring-based methods (LFSA, ACO and APD) fail
and do not converge near the pith position as illustrated in Figure 7.e and 7.f. This is
the critical scenario for the ACO and APD methods. In the last stages, they search for
the local minimum in a region centered around the previous pith prediction. The ring
information will be very limited if the region is too small, which produces a method
divergence. In the other hand, the APD-PCL method integrates radial structural insights
derived from cracks and fungus in addition to the ring structure. Thereby enhancing
its performance significantly in this particular scenario. Finally, the APD-DL method
(green marker) also performs poorly in this scenario.

Figure 8 illustrates cases of off-center pith in Forest, Logyard and Disc collections
and the presence of (strong) saw marks. As seen in Figure 8.a to 8.c, the APD-DL
method performs considerably worse than the other methods. These disks belong to the
Forest and Logyard collections. Both collections have 89 images, a small data size for
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(a) B12-2 (b) C17 (c) C10-2

(d) F07e (e) L02a (f) L02b

Fig. 7: Results over difficult cases, e.g cracks, fungus presence in Uru2 collection. Pur-
ple, LFSA; Red, ACO; Blue, APD; Yellow, APD-PCL and Green, APD-DL

training a deep learning method. As shown in the article Results section, both APD and
ACO outperform the APD-DL method on this dataset.

Figure 8.d to 8.f, show images from the Discs collection in which the pith is strongly
off-centered. A zoom-in is shown for each disc in Figure 8.g to 8.i. On this scenario,
the LFSA method (purple marker) is less precise (in all the cases, it is further from the
ground truth pith), whereas APD and APD-DL perform similarly.
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(a) D02-L1-9 (b) D01-L4-BBF-2 (c) D03-S-4

(d) D13a (e) C05a (f) B07a

(g) Zoom In D13a (h) Zoom In C05a (i) Zoom In B07a

Fig. 8: Results over difficult cases, e.g fungus presence, no pith eccentricity (uncentred
pith position) in Forest, Logyard and Disc collections. Purple, LFSA; Red, ACO; Blue,
APD; Yellow, APD-PCL and Green, APD-DL
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