Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/53420
Cómo citar
Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Marichal, Henry | - |
| dc.contributor.author | Passarella, Diego | - |
| dc.contributor.author | Randall, Gregory | - |
| dc.date.accessioned | 2026-02-10T19:07:12Z | - |
| dc.date.available | 2026-02-10T19:07:12Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | Marichal, H., Passarella, D. y Randall, G. Automatic wood pith detector : Local orientation estimation and robust accumulation. [Preprint] Publicado en: Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15317, Springer, Cham, 2025, pp. 1-15. DOI: 10.1007/978-3-031-78447-7_1. | es |
| dc.identifier.uri | https://hdl.handle.net/20.500.12008/53420 | - |
| dc.description.abstract | A fully automated technique for wood pith detection (APD), relying on the concentric shape of the structure of wood ring slices, is introduced. The method estimates the ring's local orientations using the 2D structure tensor and finds the pith position, optimizing a cost function designed for this problem. We also present a variant (APD-PCL) using the parallel coordinate space that enhances the method's effectiveness when there are no clear tree ring patterns. Furthermore, refining Kurdthongmee's work, a YoloV8 net is trained for pith detection, producing a deep learning-based approach (APD-DL). All methods were tested on seven datasets, including images captured under diverse conditions (controlled laboratory settings, sawmill, and forest) and featuring various tree species (Pinus taeda, Douglas fir, Abies alba, and Gleditsia triacanthos). All proposed approaches outperform existing state-of-the-art methods and can be used in CPU-based real-time applications. Additionally, we provide a novel dataset comprising images of gymnosperm and angiosperm species. Dataset and source code are available at http://github.com/hmarichal93/apd. | es |
| dc.description.sponsorship | Beca doctorado ANII | es |
| dc.format.extent | 15 p. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | en | es |
| dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
| dc.subject | Computer vision | es |
| dc.subject | Wood pith detection | es |
| dc.subject | Deep neural network object detection | es |
| dc.subject | Wood quality | es |
| dc.title | Automatic wood pith detector : Local orientation estimation and robust accumulation | es |
| dc.type | Preprint | es |
| dc.contributor.filiacion | Marichal Henry, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.contributor.filiacion | Passarella Diego, Universidad de la República (Uruguay). CENUR Noreste. | - |
| dc.contributor.filiacion | Randall Gregory, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) | es |
| udelar.academic.department | Procesamiento de Señales | es |
| udelar.investigation.group | Tratamiento de Imágenes | es |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| MPR25.pdf | Preprint | 18,88 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons