Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/52550
Cómo citar
| Título: | Machine learning for predicting coliform concentrations at Montevideo beaches : Identifying key environmental drivers for coastal water quality management |
| Autor: | Armand-Ugon, Pablo Goliatt, Leonardo Castro, Alberto Gorgoglione, Angela |
| Tipo: | Artículo |
| Palabras clave: | Fecal coliforms, Machine learning, Beach water quality, Hydroinformatics |
| Fecha de publicación: | 2025 |
| Resumen: | Monitoring microbial water quality at recreational beaches is essential to safeguard public health, with fecal coliforms serving as key indicators of contamination. This study applies machine learning (ML) techniques to predict fecal coliform concentrations at Montevideo’s urban beaches, aiming to support proactive and data-driven coastal water quality management. Using an extensive monitoring dataset, we developed and calibrated five ML models to predict continuous fecal coliform levels, improving upon traditional threshold-based methods. Among these, Random Forest (RF) and Histogram-based Gradient Boosting (HGB) models showed very good predictive performance, with RF yielding the most consistent estimates of microbial contamination and HGB showing comparable accuracy but higher predictive uncertainty. The models were optimized using cross-validation
and Optuna, with mean squared error as the loss function. Feature importance analysis using SHAP values revealed that Enterococcus concentrations were the most influential predictor, followed by water temperature and salinity. Seasonal patterns in coliform levels were also identified, likely linked to fluctuations in water temperature. These findings provide actionable insights into the dynamics of microbial contamination and highlight the
potential of ML models for early warning systems, adaptive monitoring, and improved risk communication. This integrative approach not only enhances predictive performance but also advances our understanding of the environmental processes influencing water quality in urban coastal systems. |
| Editorial: | MDPI |
| EN: | Earth, vol. 6, no. 4, dec. 2025, pp. 1-24, DOI: 10.3390/earth6040147. |
| Financiadores: | Esta investigación fue financiada por la Agencia Nacional de Investigación e Innovación (ANII), Proyecto número VCT-1-2024-2-184149. |
| Citación: | Armand-Ugon, P., Goliatt, L., Castro, A. y otros. "Machine learning for predicting coliform concentrations at Montevideo beaches : Identifying key environmental drivers for coastal water quality management". Earth. [en línea]. 2025, vol. 6, no. 4, pp. 1-24. DOI: 10.3390/earth6040147. |
| ISSN: | 2673-4834 |
| Cobertura geográfica: | Departamento de Montevideo, Uruguay |
| Licencia: | Licencia Creative Commons Atribución (CC - By 4.0) |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| AGCG25.pdf | Versión publicada | 1,75 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons