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Abstract

Monitoring microbial water quality at recreational beaches is essential to safeguard public
health, with fecal coliforms serving as key indicators of contamination. This study applies
machine learning (ML) techniques to predict fecal coliform concentrations at Montevideo’s
urban beaches, aiming to support proactive and data-driven coastal water quality manage-
ment. Using an extensive monitoring dataset, we developed and calibrated five ML models
to predict continuous fecal coliform levels, improving upon traditional threshold-based
methods. Among these, Random Forest (RF) and Histogram-based Gradient Boosting
(HGB) models showed very good predictive performance, with RF yielding the most
consistent estimates of microbial contamination and HGB showing comparable accuracy
but higher predictive uncertainty. The models were optimized using cross-validation
and Optuna, with mean squared error as the loss function. Feature importance analysis
using SHAP values revealed that Enterococcus concentrations were the most influential
predictor, followed by water temperature and salinity. Seasonal patterns in coliform levels
were also identified, likely linked to fluctuations in water temperature. These findings
provide actionable insights into the dynamics of microbial contamination and highlight the
potential of ML models for early warning systems, adaptive monitoring, and improved
risk communication. This integrative approach not only enhances predictive performance
but also advances our understanding of the environmental processes influencing water
quality in urban coastal systems.

Keywords: fecal coliforms; machine learning; beach water quality; hydroinformatics

1. Introduction

Monitoring microbial water quality at recreational beaches is essential to safeguard
public health [1]. Among microbial indicators, coliform bacteria, particularly Escherichia
coli and fecal coliforms, are widely used to assess fecal contamination and the potential
presence of pathogenic microorganisms in surface waters [2]. These indicators are especially
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relevant in coastal urban areas, where pollution from stormwater runoff, combined sewer
overflows, and diffuse sources may lead to fluctuating levels of contamination [3].

Exposure to elevated coliform concentrations during recreational activities has been
associated with an increased risk of gastrointestinal, respiratory, and dermatological ill-
nesses [4]. Vulnerable populations, such as children, the elderly, and immunocompromised
individuals, are particularly at risk. In response, international guidelines, including those
from the World Health Organization [5] and regional frameworks such as MERCOSUR [6],
have established thresholds for acceptable microbial contamination levels. In Uruguay,
these thresholds are enforced through routine monitoring along the country’s most fre-
quented recreational beaches [7].

Montevideo’s urban coastline, which stretches over 20 km along the Rio de la Plata
estuary, is home to several popular beaches that are intensively used, especially during the
summer months. However, these beaches are subject to multiple contamination pressures,
including urban runoff, sewer overflows, and drainage discharges, particularly during
and after rainfall events. As a result, microbial contamination can vary significantly in
space and time, posing challenges to public health authorities responsible for water quality
monitoring and risk communication [8].

Traditional monitoring methods rely on manual sampling and laboratory-based anal-
yses, which, although accurate, often involve significant time lags and limited spatial
coverage. These constraints can delay public health advisories and hinder effective, real-
time management of beaches. To overcome these limitations, recent research has begun
to explore data-driven approaches that leverage environmental, meteorological, and hy-
drological information to anticipate contamination events [9-12]. In this context, machine
learning (ML) techniques have emerged as powerful tools for predicting microbial wa-
ter quality, offering the potential for faster, more adaptive, and spatially comprehensive
assessments [13-15].

Several studies have focused on developing predictive models to support water qual-
ity management in Montevideo’s coastal areas, particularly its recreational beaches [16-19].
Segura et al. [16] applied ML techniques to predict exceedances of fecal coliform concentra-
tions (i.e., FC > 2000) using a decade of high-quality monitoring data. By incorporating
in situ, meteorological, and oceanographic variables, they trained various ML models
and found that stratified Random Forest outperformed other algorithms, achieving 86%
overall accuracy and a 60% improvement in true positive rates compared to a baseline
model. Bourel et al. [19] addressed the specific challenge of predicting rare contamination
events from highly imbalanced datasets, which are common in recreational water quality
data. Their study introduced and evaluated several ML approaches, including Synthetic
Minority Oversampling Technique (SMOTE) and stratified Random Forest, showing that
data pre-treatment is essential to improve model sensitivity. Their findings highlighted
the limitations of traditional accuracy metrics for imbalanced problems and suggested
alternative evaluation metrics, such as true positive and false positive rates. Among 52
tested algorithms, Random Forest and SVMs with appropriate resampling techniques
yielded the best results. In a broader ecological modeling context, Bourel et al. [17] explored
the use of consensus methods that combine multiple binary classifiers (e.g., GLM, RE, SVM,
Boosting) to predict the presence or absence of marine phytoplankton species. Some of
these species have implications for coastal water quality and public perception due to
toxicity or discoloration. Their weighted average consensus model consistently achieved
the lowest classification errors across diverse datasets, including marine phytoplankton and
benchmark open-access datasets. Bourel and Segura [18] extended the application of ML to
multiclass ecological classification problems, introducing seven multiclass classification
algorithms and assessing their performance using both simulated and real phytoplankton
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data. Their results highlighted how the structure of the data influences algorithm selection
and predictive performance. Notably, Random Forest, SAMME boosting, and consensus
logistic regression models showed high accuracy, while interpretability and generalization
error were emphasized as key criteria for model selection in ecological applications.

While the aforementioned studies have demonstrated the potential of ML models
for classification tasks, particularly in identifying exceedance events of fecal coliform
thresholds, the predictive modeling of actual concentration values remains less explored.
While previous studies in Montevideo [16,18] have primarily focused on threshold-based
classifications to assess bathing water quality, the present work advances this line of
research by modeling continuous fecal coliform concentrations, enabling a more nuanced
representation of contamination variability across space and time.

Furthermore, most existing studies prioritize model performance metrics without
thoroughly examining the interpretability or explanatory power of the [20]. In particular,
the identification and ranking of the most influential predictor variables in determining col-
iform levels is an underdeveloped area of research. Understanding which environmental,
meteorological, or oceanographic variables most strongly drive contamination dynamics
can inform targeted monitoring efforts and resource allocation and support the develop-
ment of mechanistic hypotheses regarding pollution sources and transport pathways.

Our study aims to address these gaps by (i) developing ML models to predict fe-
cal coliform concentrations as continuous variables across selected Montevideo beaches,
(ii) evaluating the predictive utility of these models for practical water quality management,
and (iii) analyzing the relative importance of input features to uncover key drivers of micro-
bial contamination. This integrated approach aims to enhance predictive performance and
generate actionable insights into the environmental processes that underlie water quality
variability in urban coastal systems.

Beyond the application of machine learning to Montevideo data, this work constitutes
the first continuous (non-threshold) prediction of coliform levels for Uruguayan beaches,
advancing the use of explainable machine learning for microbial risk management and
offering a transferable framework for other coastal systems.

2. Material and Methods

2.1. Water Quality and Meteorological Data
2.1.1. Water Quality Information

For this study, we utilized water quality data from the Intendencia de Montevideo
(IM) monitoring program, which regularly assesses the water quality at the city’s beaches
to ensure public health and support effective beach management. The IM’s Servicio
de Evaluacién de la Calidad y Control Ambiental (SECCA) conducts year-round water
quality monitoring along the urban coastline of Montevideo, which spans 530 km?, 40% of
which is urbanized. The city’s coastline stretches across the Rio de la Plata and includes
approximately 15 of the 70 km of beach arcs within the department [21].

During the summer, the IM performs regular water quality sampling four times a week,
with one sample being randomly selected as mandatory, ensuring data collection regardless
of weather conditions, including rainfall. Additionally, water samples are collected from
coastal discharges, including stormwater outlets, streams, and creeks that flow into each
beach. Other samples are taken only when no discharges have occurred in the previous
24 h [21].

For the purpose of our study, we focused on beaches with more than 900 data points,
ensuring sufficient temporal coverage and representation of variability for robust model
development (Table 1). This threshold was chosen to balance the need for a consistent and
sizable dataset while retaining a representative subset of the monitored beaches. Previous
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studies have shown that machine learning models for environmental prediction typically
require several hundred observations to capture seasonal patterns, detect rare events, and
ensure generalizability [22,23]. The selected beaches were Pocitos (1408 data points), Malvin
(1407 data points), Del Cerro (1401 data points), Ramirez (1399 data points), Pajas Blancas
(1010 data points), and Carrasco (996 data points) (Figure 1).

Table 1. Number of samples collected at each beach monitored by IM.

Beach Number of Samples
Pocitos 1408
Malvin 1407

Cerro 1401

Ramirez 1399

Pajas Blancas 1010

Carrasco 996
Ingleses 5
Santa Catalina 2
Punta Espinillo 2
Buceo 2

These beaches were selected for their extensive datasets, which enable a more robust
statistical analysis of microbial contamination patterns over time. Data include coliform
concentrations (CFU/100 mL), salinity (PSU), water temperature (°C), and enterococcus
(CFU/100 mL). Additionally, each water quality data point is classified as either Represen-
tative or Non-Representative. Samples are labeled Representative when no rainfall-induced
discharges occurred in the 24 h preceding sampling. In contrast, they are marked as
Non-Representative when precipitation events result in discharges, rendering the samples
unrepresentative of normal conditions. Figure 1 shows the locations of the beaches selected
for this study along the Montevideo coastline.

Pajas Blancas Beac

@

Figure 1. Location of the water quality (yellow pinpoints) and meteorological (red pinpoint) monitor-
ing stations.



Earth 2025, 6, 147

50f24

2.1.2. Meteorological Information

Meteorological data used in this study were obtained from the Agroclimatic Database
of the National Institute of Agricultural Research (INIA) [24]. The data were collected
at the INIA Las Brujas meteorological station, located approximately 35 km northwest
of Montevideo (Figure 1). This station provides high-quality, daily monitored weather
information representative of the study area.

The variables considered for model development included accumulated daily precipi-
tation (mm), mean air temperature (°C), relative humidity (%), solar radiation (cal/ cm?),
and wind speed (km/day).

2.2. Data Analysis

Before implementing the machine learning models, we performed an Exploratory Data
Analysis (EDA). This step was essential for gaining a better understanding of the distribu-
tion and behavior of fecal coliform concentrations across the selected beaches, identifying
any potential outliers, and supporting the selection of relevant predictor variables for
model development. The goal was to ensure that redundant or highly correlated features
did not mask key relationships between environmental variables and coliform levels.

EDA was conducted using Python (version 3.10) tools, including the pandas-profiling
(version 3.6.6) package, which provided an automated overview of the dataset. Given
the non-linear nature of the environmental processes involved, we relied primarily on
Spearman’s rank correlation to assess monotonic relationships between variables. To
complement this, we also computed the Kendall correlation coefficient, which provided
additional insights, particularly in cases where relationships were either non-linear or
involved categorical data.

Correlation matrices were visualized through heatmaps, where darker shades indi-
cated stronger associations, whether positive or negative. These visual tools helped screen
for multicollinearity among input features, enabling a more informed selection of the final
set of predictors to be used in model training.

In addition, to harmonize the scales of the input variables, since they differed in
units and magnitude, we applied a min-max normalization, transforming all variables
into a common range of [0, 1]. This step was necessary to ensure that no single variable
dominated the learning process due to its scale. The normalization was performed using
the MinMaxScaler from the sklearn.preprocessing module, as all input features were strictly
positive and no significant outliers were detected.

2.3. Machine Learning Models

We evaluated five regression models of varying complexity to predict fecal coliform
concentrations, using Linear Regression as the baseline. Linear Regression (LR) is a simple,
interpretable model that assumes a linear relationship between input features and the target
variable. It serves as a benchmark to assess the relative performance improvements offered
by more complex models.

Support Vector Regressor (SVR) maps the input data into a high-dimensional space
using kernel functions. It seeks to find a function that approximates the data within
a specified error margin. SVR is known for its robustness to outliers and flexibility in
capturing non-linear relationships.

The Decision Tree Regressor (DTR) is a non-parametric model that recursively splits the
input space into regions based on feature values, resulting in a tree structure. It can capture
non-linear patterns and interactions, but is prone to overfitting if not properly constrained.

Random Forest Regressor (RFR) is an ensemble method that constructs multiple
decision trees and outputs the average prediction, reducing overfitting and improving
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generalization. It enhances the stability and accuracy of decision trees by introducing
randomness in both feature selection and the selection of sample subsets.

Histogram-Based Gradient Boosting Regressor (HGBR) is a highly efficient and scal-
able implementation of gradient boosting that bins continuous features into histograms
for faster training. It builds additive models in a forward stage-wise fashion, optimizing
a loss function through gradient descent, and is particularly suited for large datasets and
complex non-linear relationships.

2.4. Model Optimization and Performance Evaluation

To ensure robust model performance and prevent overfitting, we implemented a
structured model optimization workflow [25]. The dataset was randomly divided into
80% for training and 20% for testing. This split ensured that the models were trained on
a representative subset of the data while retaining an independent portion for unbiased
evaluation. Model calibration was conducted using 5-fold cross-validation within the
training set, which provided a reliable estimate of generalization performance and helped
tune hyperparameters effectively. For this purpose, we employed Optuna [26], an efficient
hyperparameter optimization framework that utilizes a Bayesian sampling strategy. The
Mean Squared Error (MSE) was adopted as the loss function to guide the search for optimal
model configurations.

Table 2 presents the hyperparameters used for the ML models, where each model’s
hyperparameters are listed along with their corresponding bounds or possible values. The
table outlines log-scale ranges for continuous parameters such as learning rates and depths,
categorical options for parameters such as kernel types and criteria, and specific integer
ranges for parameters such as the number of estimators and minimum sample splits.

Table 2. Hyperparameters and their respective bounds for each machine learning model. The
description of the parameters can be found in Geron [27].

Model Hyperparameter Bounds

SVR C [1x1073,1 x 10%]
gamma {scale, auto}
kernel {linear, poly, rbf, sigmoid}
epsilon [0.01,0.5]
degree [2, 5] (only used for "poly” kernel)
DTR max_depth [2,30]

min_samples_split  [2, 20]
min_samples_leaf [1, 20]

criterion {squared_error, friedman_mse, absolute_error, poisson}
random_state 42

RFR n_estimators [50, 500]
max_depth [2,30]

min_samples_split  [2, 20]
min_samples_leaf [1, 20]

max_features {sqrt, logz, None}
random_state 42

HGBR learning rate [1x1073,0.5]
max_iter [50, 1000]
max_leaf_nodes [20, 100]
max_depth [2,30]
12_regularization [1x 10719, 1.0]

random_state 42
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Table 3 summarizes the mathematical expressions for each metric, providing an
overview of their definitions and uses. Model performance was assessed using three
standard statistical metrics: Mean Squared Error (MSE), Nash-Sutcliffe Efficiency (NSE),
and Percent Bias (PBIAS). These metrics provide complementary insights into the accuracy,
explanatory power, and bias of the predictions in comparison to observed values.

Table 3. Performance metrics and their corresponding mathematical expressions: (1) MSE measures
the average squared difference between observed (y;) and predicted (7;) values, with lower values
indicating better performance. It ranges from [0, o). (2) NSE evaluates how well the model predic-
tions match observed data. It ranges between (—oo,1], with 1 being a perfect match. Values < 0
suggest the mean of observations is a better predictor. (3) PBIAS indicates the average tendency
of the predicted values to be larger or smaller than the observed ones. It ranges between (—co, c0);
0 indicates a perfect model, with positive values indicating underestimation and negative values

indicating overestimation.

Metric Expression
1& .
Mean Squared Error (MSE) MSE — : Z(J/i — ;)
i=1

Nash-Sutcliffe Efficiency (NSE) NSE — 1 Zim1 (i = §i)?
1 7)2

1y =)
n ~

Percent Bias (PBIAS) PBIAS = 100 x Y1 (vi — 90)

n

i—=1Yi

As a reference for interpreting the model performance metrics, we follow the guide-
lines proposed by Moriasi et al. [28] (Table 4). Although specific guidelines for coliform
concentrations are not provided, the evaluation criteria established for nutrient param-
eters such as phosphorus (P) or nitrogen (N) can serve as a reasonable benchmark for
assessing model accuracy in this context, given their similar variability and behavior in
environmental modeling applications.

Table 4. Performance rating criteria for evaluation metrics (adapted from [22,28]).

Performance Rating NSE PBIAS (%)
Very Good >0.65 <+£10
Good 0.50-0.65 +10to £15
Satisfactory 0.30-0.50 +15 to +30
Unsatisfactory <0.30 >+£30

To estimate model uncertainty, different strategies were applied depending on the
characteristics of each machine learning model. For the RFR, epistemic uncertainty was
quantified by computing the standard deviation of predictions from all individual decision
trees within the ensemble. In the case of the HGBR, aleatoric uncertainty was estimated
by training two additional models using quantile regression to predict the 5th and 95th
percentiles, thereby deriving a 90% prediction interval. This confidence level was selected
to balance coverage and interpretability, capturing most of the variability in fecal coliform
predictions without being overly conservative for management applications. Since neither
the DTR nor the SVR provides uncertainty estimates natively, a bootstrapping approach
was employed: 100 models were trained on different resampled versions of the train-
ing data. The number of iterations was chosen as a compromise between computational
efficiency and the stability of the resulting uncertainty estimates, which showed conver-
gence beyond approximately 100 resamples. For the Linear Regression model used as a
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baseline, prediction intervals were computed analytically based on the standard error of
the residuals under the assumption of normally distributed errors. This combination of
ensemble-based, quantile-based, resampling-based, and analytical methods allowed us to
consistently estimate predictive uncertainty across all models.

2.5. Feature Importance Analysis

7

To assess the input variables’ relative importance and enhance the model predictions
interpretability, we carried out a feature importance analysis using SHapley Additive
exPlanations (SHAP). SHAP provides a unified framework based on cooperative game
theory to explain individual predictions by computing the contribution of each feature,
making it applicable to a wide range of ML algorithms [29].

In this study, SHAP values were computed using the TreeExplainer, Kernel Explainer,
and PermutationExplainer methods available in the SHAP Python package, depending on
the type of model used. This allowed us to capture both linear and non-linear relation-
ships between the predictors and the target variable, as well as to account for potential
interactions among features.

SHAP summary plots provide a compact visualization of feature importance. Each
point on the plot represents a SHAP value for a given feature and a single observation.
The x-axis shows the magnitude and direction of the feature’s impact on the model output
(positive or negative). At the same time, the color indicates the original value of the feature
(e.g., red for high values and blue for low values). Features are sorted from top to bottom
by their overall importance, allowing quick identification of the most influential variables.

In addition, to better understand how pairs of variables jointly influence model predic-
tions, SHAP interaction plots were generated. These plots illustrate how the SHAP value of
one feature changes in response to changes in another, highlighting potential synergistic or
compensatory effects between predictors. This visualization helps identify non-linear de-
pendencies and interactions that are not easily captured by traditional importance rankings,
providing deeper insight into model behavior and feature relationships.

2.6. Proposed Framework

The methodological approach adopted in this study aimed to predict fecal coliform
concentrations at selected recreational beaches using meteorological data and water qual-
ity indicators, with an emphasis on model interpretability, reproducibility, and practical
applicability. We considered water quality parameters, including fecal coliforms, salinity,
water temperature, and enterococcus, along with daily meteorological variables, including
accumulated precipitation, air temperature, relative humidity, wind speed, and solar radia-
tion. An EDA was conducted on the entire dataset to detect outliers, understand variable
distributions, and explore correlations among variables. Subsequently, all features were
normalized using a min-max transformation, scaling them to a standard range of [0, 1].

The normalized dataset was then used to train and test five different ML models. For
all of them, the output was Log-scaled coliform concentration. To evaluate the models’
predictive performance, the dataset was randomly split into 80% for training and 20% for
testing. The training process included hyperparameter tuning using 5-fold cross-validation,
which allowed for model optimization and reduced the risk of overfitting. Once the best
parameters were identified, the final models were retrained on the whole training set
and evaluated on the test set using performance metrics such as the NSE, RMSE, and
MAE. These metrics provided a comprehensive understanding of each model’s ability to
generalize to new, unseen data.
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To assess the influence of each input variable on model predictions, we conducted a
feature importance analysis using SHAP, which enabled the interpretation of individual
model outputs and the identification of the most relevant predictors.

All steps were designed with reproducibility in mind: code and data workflows
were managed via a GitHub repository, ensuring transparency and replicability. Finally,
the results were analyzed in the context of water safety and public health, with the aim
of deriving policy-relevant insights to support beach management and water quality
advisories.

The workflow of the methodology conceptualization adopted in this study is reported
in Figure 2.

@)

Water Quality
Parameters

(&)

Variables

Meteorological ]

Exploratory
Data Analysis

Variable
Distribution Correlation
Analysis Exploration

Im

Feature
Normalization

Training Set
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Best Model
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Importance Testing Set

Identify Key
Predictors

Results Analysis

Figure 2. Methodology conceptualization.
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3. Results
3.1. Exploratory Data Analysis

The distribution of fecal coliform concentrations reveals a non-stationary, highly
skewed, and seasonal behavior (Figure 3). To address the pronounced skewness and
heteroscedasticity observed in the raw fecal coliform concentrations, a base 10-logarithmic
transformation was applied (Log). The resulting distribution (Figure 3) exhibits a notable
improvement in symmetry and spread, facilitating more straightforward interpretation and
more robust statistical modeling. After transformation, the mean and median values are
2.37 and 2.43 (in Log CFU /100 mL), respectively, indicating a much lower skewness (—0.18),
in contrast to the original skewness of 31.74. The kurtosis also dropped substantially from
1609.83 to 0.06, indicating the absence of heavy tails and a distribution closer to normality.
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Figure 3. Distribution of fecal coliforms (upper histogram) and Log of fecal coliforms (lower his-

togram).

The coefficient of variation decreased from 4.45 to 0.31, and the standard deviation
dropped from 4092.22 to 0.73, reflecting a significant reduction in variability relative to the
mean. Additionally, extreme values no longer dominate the distribution: the interquartile
range (IQR) shrinks from 610 to 0.94, and the range reduces from 239,997 to 4.90. These
changes suggest that the log-transformed data is not only easier to visualize but also
more appropriate for statistical analysis and modeling, especially under assumptions of
normality or homoscedasticity.

In Log scale, differences in lower and moderate concentrations become visible, making
trends easier to detect and interpret. This transformation helps mitigate the impact of
extreme values, allowing both central tendencies and variability to be evaluated more
accurately. In Figure 4, the boxplot of Log-transformed thermotolerant coliform concen-
trations is presented for each selected beach. To contextualize these results, we compare
the observed values with Uruguay’s bathing water quality standards established by the
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Ministry of Environment. According to national regulations (Decree No. 253/79 and its
amendments, RM s/n of 25 February 2005, and the Gesta Agua proposal) [30], waters clas-
sified as Class 3 must meet two key microbiological criteria: (i) individual samples should
not exceed 2000 CFU /100 mL, and (ii) the geometric mean of at least five samples must
remain below 1000 CFU /100 mL. In Figure 4, these thresholds are indicated by horizontal
dashed lines, allowing a visual assessment of compliance. The distribution of Log-coliform
levels varies markedly among beaches, highlighting spatial disparities in water quality and

potential health risks.
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5 N ’ 2000 CF/100 mL
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2 4
o4 1 - = [ — —
o
—
=
S
] . —
E
8
8
o 2f
=
()]
o
—
1 I ——— D ———
1 ¢ _— ¢
& &L & & & &
<& & fo(\ @0 &~
° & & &> <
&
@

Figure 4. Distribution of the fecal coliforms concentration at the selected beaches (Log scale).

To explore relationships between variables, we computed both Spearman and Kendall
rank correlation coefficients. Since the results were highly similar, we present only the
Spearman correlation matrix for simplicity (Figure 5). A strong positive correlation was
observed between fecal coliforms and enterococcus (Spearman = 0.813; Kendall = 0.631),
which is expected as both are fecal indicator bacteria commonly used to assess microbio-
logical water quality. Their simultaneous increase typically reflects contamination from
a shared source, such as combined sewer overflows or stormwater discharges carrying
human or animal waste. Another noteworthy correlation was found between water and
air temperatures (Spearman = 0.881; Kendall = 0.701). This is also consistent with physi-
cal expectations, as water temperature responds to atmospheric conditions. Warmer air
temperatures tend to result in higher water temperatures, especially in shallow coastal
environments, due to heat exchange and solar radiation. In addition, both air temperature
and water temperature showed moderate to strong positive correlations with solar radia-
tion (Spearman = 0.617 and 0.639, respectively). This is consistent with the expected energy
balance dynamics, where increased solar radiation leads to surface warming of both air
and water bodies. Conversely, a strong negative correlation was found between relative
humidity and solar radiation (Spearman = —0.692), which can be explained by the typical
inverse relationship between sunlight and moisture: sunnier conditions often coincide with
drier air, especially during the daytime when solar radiation is at its peak.

Regarding sample representativeness, 84.8% of the water quality measurements were
labeled as Representative, indicating that no rainfall-induced discharges occurred within
the 24 h prior to sampling. In contrast, only 15.2% of the samples were classified as No
Representative, meaning they were collected following rainfall events, potentially capturing
conditions affected by combined sewer overflows or stormwater runoff (Figure 6). This
distribution supports the predominance of routine monitoring under dry-weather condi-
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tions, while also highlighting the limited but relevant influence of wet-weather events on
water quality.
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Figure 6. Percentage of Representative and No Representative samples.

3.2. Hyperparameter Optimization

Table 5 summarizes the optimal hyperparameter configurations obtained for each
regression model after tuning, highlighting the diversity in complexity and regularization
strategies selected for different algorithms.

Subsequently, we evaluated the importance of each hyperparameter to better un-
derstand which parameters most significantly influenced model performance during the
optimization process (Figure 7).
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Table 5. Best hyperparameters for each optimized regression model.

Model Best Hyperparameters
SVR C =13.44, gamma = auto, kernel = rbf, epsilon = 0.485

DTR max_depth = 6, min_samples_split = 13, min_samples_leaf = 18,
criterion = poisson

RFR n_estimators = 343, max_depth = 23, min_samples_split = 12,
min_samples_leaf = 1, max_features = log2

HGBR learning_rate = 0.016, max_iter = 497, max_leaf_nodes = 34,
max_depth =4, 12_regularization = 6.65 x 10~°

Hyperparameter Importance - SVR

max_depth

o2 04 3 o8

Importance

Figure 7. Hyperparameters importance for SVR, DT, RF, and HGB models.

The analysis of hyperparameter importance revealed distinct patterns across models,
reflecting the differing mechanisms by which each algorithm controls complexity and
generalization. For the Support Vector Regressor (SVR), the regularization parameter C
emerged as the most influential hyperparameter, significantly affecting model flexibility
and the trade-off between bias and variance. The second most important was epsilon,
which defines the width of the margin within which no penalty is given for errors, high-
lighting its role in controlling model tolerance to deviations. In the case of the Decision Tree
Regressor (DT), the tree depth (max_depth) has a significant impact on model performance,
which aligns with its direct effect on model complexity and control of overfitting. For
the Random Forest (RF) model, the number of estimators (n_estimators) had the most
significant influence, likely because ensemble performance strongly depends on the num-
ber of trees used. Interestingly, min_samples_split was more important than max_depth,
which had the least influence—perhaps due to sufficient depth being achieved early across
trees, reducing the marginal gain of increasing depth further. Finally, in the HistGradient
Boosting Regressor (HGB), learning_rate proved to be the most critical, as it governs the
contribution of each boosting step and thus heavily affects convergence. This was followed
by max_iter and max_leaf_nodes, both of which influence the model’s capacity to learn
complex relationships while mitigating overfitting. These results highlight the importance
of tuning model-specific parameters that most directly shape the learning dynamics and
structural capacity of each algorithm.
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3.3. Model Performance Evaluation

To evaluate the predictive capacity of different algorithms, five regression models

were trained and tested using Log-transformed fecal coliform concentrations as the target

variable. Table 6 summarizes the performance of each model across the training and test
datasets, using MSE, NSE, and PBIAS as evaluation metrics. Figure 8 shows the scatter
plots of observations vs. predictions for the three best models (Decision Tree, Random
Forest, and HistGradient Boosting), including the corresponding 90% prediction intervals

to illustrate model uncertainty.
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Figure 8. Scatter plots of coliform observations vs. predictions for DT, RF, and HGB models.

Table 6. Model performance metrics for training and test datasets and their uncertainty.

Model Dataset MSE NSE PBIAS (%) Uncertainty
. . . Train 045 0.15 —0.00
Linear Regression (baseline) Test 049  0.08 149 0.034
Train 043 0.18 0.02
Support Vector Regressor Test 048 010  —127 0.064
Decision Tree Recressor Train 0.16 0.70 0.00
ccision free Regress Test 017 067  —0.63 0.129
Train 0.07 0.87 —0.04
Random Forest Regressor Test 016 070  —0.83 0.068
. . . Train 014 0.74 0.00
HistGradient Boosting Regressor Test 016 070 —056 0.568
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The Linear Regression model, used as a baseline, showed limited predictive capability,
with low NSE values on both the training (0.15) and test set (0.08). Although its PBIAS
values were close to zero, indicating an overall unbiased prediction, the high MSE reflects
its inability to capture the non-linearities and variance in the data. The uncertainty was low,
but this was a consequence of the model’s rigidity and underfitting rather than genuine
predictive reliability.

The Support Vector Regressor improved upon the baseline slightly, with higher NSE
values (0.18 on the training set and 0.10 on the test set) and lower MSE. SVR’s ability to
capture some non-linear patterns led to more accurate and stable predictions, although the
performance gain was still modest. The uncertainty levels were moderate, but given the
poor performance, this did not translate into meaningful reliability.

The Decision Tree Regressor showed a good fit on the training data (NSE = 0.70,
MSE = 0.16), with only a slight drop in performance on the test set (NSE = 0.67), indicating
that the model generalized reasonably well. While its training performance was higher, the
small performance gap suggests only mild overfitting. However, the uncertainty associated
with this model was higher than other ensemble methods, reflecting its sensitivity to data
fluctuations and the inherent instability of single-tree models.

The Random Forest Regressor achieved an NSE of 0.87 on the training set and 0.70 on
the test set, it delivered the highest predictive power and lowest MSE among all models,
while maintaining very low bias. Importantly, its uncertainty was also among the low-
est, indicating robust and stable predictions. This demonstrates the benefit of ensemble
averaging in reducing variance and overfitting, while retaining high accuracy.

The HistGradient Boosting Regressor also showed strong predictive performance,
with NSE values of 0.74 and 0.70 for the training and test sets, respectively, and the lowest
test MSE of 0.16. Its bias was the lowest of all models, suggesting well-centered predictions.
However, its predictive uncertainty was substantially higher than that of the other ensemble
method, raising concerns about the stability and reliability of its forecasts, despite the good
average metrics. This suggests that while gradient boosting can effectively capture complex
interactions and high-order non-linearities, it may be more sensitive to data variability
in practice.

Overall, ensemble-based methods outperformed both the linear and kernel-based
alternatives. Among them, Random Forest provided the most reliable balance between ac-
curacy and uncertainty, making it the most robust choice for predicting fecal contamination
levels. While HistGradient Boosting achieved comparable accuracy, its elevated uncertainty
highlights the need for caution in its application. These findings reinforce the adoption of
tree-based ensemble models, particularly Random Forest, as effective and dependable tools
for handling skewed and heterogeneous environmental datasets.

In Figure 9, a comparison of model performance and uncertainty is reported.

3.4. Most Influential Features for Coliform Prediction

To gain insights into the internal reasoning of the best-performing model, a SHAP
analysis was conducted on the Random Forest (Figure 10). This model not only achieved the
highest predictive performance but also demonstrated the ability to capture key physical
and biogeochemical processes influencing fecal coliform concentrations. It is worth noting
that the SHAP analysis results were highly consistent across all three tree-based models
(Decision Tree, Random Forest, and HistGradient Boosting), reinforcing the robustness of
the identified key drivers.
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Figure 10. SHAP values for Random Forest model (best model). Each point represents a single
observation, with colors indicating the magnitude of the feature value (red = high; blue = low).
Positive SHAP values indicate an increase in predicted fecal coliform concentration, while negative
values indicate a decrease.

The SHAP summary plot (Figure 10) shows that enterococcus was the most influential
feature by a large margin, dominating the model’s predictions. This is consistent with
expectations, as both indicators originate from similar sources of fecal contamination
and tend to covary, particularly under high-load conditions. The high SHAP values
associated with enterococcus reflect its strong and consistent contribution to predicting
fecal coliform levels.

Salinity emerged as the second most important predictor. Its relevance can be at-
tributed to the fact that freshwater inflows tend to dilute both salinity and fecal contami-
nants. Lower salinity values often correspond to stormwater events or increased runoff,
which are also associated with spikes in microbial concentrations. The model successfully
captured this inverse relationship.

Water temperature ranked third in importance, likely due to its influence on microbial
survival, metabolic activity, and decay rates. Higher temperatures can promote bacterial
growth up to a certain point, and their strong correlation with other environmental variables
(e.g., solar radiation, seasonality) further supports their predictive relevance.
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Interestingly, accumulated precipitation ranked as the least influential variable in
the SHAP analysis. This result is somewhat unexpected, given the known role of rainfall
in mobilizing fecal contaminants through surface runoff and combined sewer overflows.
One possible explanation is that the precipitation monitoring station used in this study is
located too far from the coastal sampling sites, and therefore may not accurately capture
the localized rainfall events that influence water quality near the shoreline. Additionally,
the temporal mismatch between rainfall events and sampling times, especially if peak
contamination occurs shortly after rainfall and is not consistently captured during regular
sampling, could reduce the apparent influence of precipitation in the model. These limita-
tions underscore the need to enhance the spatial and temporal resolution of rainfall data
for future studies.

Figure 11 shows the SHAP interaction plot for enterococcus and salinity, the two
most influential predictors identified in the RF model. This plot effectively reveals the
relationship between enterococcus concentration and salinity in predicting fecal coliform
levels. While high enterococcus concentrations consistently result in the highest positive
SHAP values, indicating it’s the dominant predictor of high contamination regardless
of salinity, the plot highlights a critical conditional risk factor at lower microbial levels.
Specifically, when enterococcus concentrations are low, the model’s prediction is strongly
influenced by salinity: the presence of low salinity (blue points) significantly amplifies the
positive impact of even moderate enterococcus readings (pushing the SHAP value higher).
Conversely, a high salinity (red points) reinforces the model’s prediction of a low coliform
risk when enterococcus is low, driving the SHAP value to be more negative. This pattern
supports the hypothesis that low salinity acts as a crucial contextual proxy for freshwater
runoff and dilution, maximizing the predicted risk associated with microbial indicators
following a contamination event.

RandomForestRegressor: Interaction between Enterococcus and Salinity
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Figure 11. SHAP Interaction Plot for Random Forest model: enterococcus vs. salinity.

4. Discussion

The Log-transformed boxplot of thermotolerant coliforms reveals meaningful dif-
ferences in microbial water quality across Montevideo’s beaches. To quantitatively con-
textualize these values, we compare the observed concentrations with the bathing water
quality standards defined by the Ministry of Environment of Uruguay (Ministerio de
Ambiente) [30] (Table 7).
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Table 7. Percentage of samples exceeding thermotolerant coliform thresholds at selected beaches.

Beach >1000 CFU/100 mL (%) >2000 CFU/100 mL (%)
Del Cerro 25.0 14.0
Ramirez 22.6 11.8
Pocitos 14.1 54
Carrasco 16.5 7.7
Malvin 13.9 6.5
Pajas Blancas 41 1.9

Beaches such as Del Cerro and Ramirez exhibit notably elevated bacterial concentra-
tions, with around 25% and 22.6% of samples, respectively, exceeding the 1000 CFU /100 mL
threshold. More alarmingly, roughly 14% and 11.8% of samples at these locations surpass
2000 CFU/100 mL, suggesting recurring health risks for recreational users.

By contrast, beaches like Malvin, Pocitos, and Carrasco show more moderate levels,
though still with 13-16% of samples exceeding the 1000 CFU /100 mL mark. Pajas Blancas
consistently demonstrates the best microbial quality among the group, with only 4.1% of
samples above 1000 CFU/100 mL and fewer than 2% above 2000.

The EDA revealed a high correlation between enterococci and thermotolerant col-
iforms, a result that aligns with their common fecal origin and similar environmental behav-
ior. This strong association was further confirmed in the SHAP analysis, where enterococci
emerged as the most influential variable in the model predicting coliform concentrations,
with an order of magnitude greater importance compared to the following most relevant
variable, salinity. This dominance is expected given the shared sources of contamination
and the persistence patterns of both bacterial indicators in coastal environments.

Salinity and water temperature ranked similarly in the SHAP analysis, with compara-
ble influence, supporting previous findings in the literature. For instance, Segura et al. [16]
identified salinity as one of the most influential predictors of fecal coliform concentrations,
while Bourel et al. [19] found that fecal coliform classification depends on salinity and
water temperature. These physicochemical parameters are known to capture the local
dynamics of beach and watershed interactions, and are particularly relevant in coastal
urban settings where tidal movements, freshwater discharges, and ambient conditions
interact closely.

The seasonality observed in the distribution of thermotolerant coliforms can be pri-
marily attributed to the influence of water temperature, which is closely linked to air
temperature [31]. During the summer months, elevated air temperatures result in higher
water temperatures, creating more favorable conditions for bacterial growth and persis-
tence [15]. Conversely, in winter, lower temperatures can inhibit microbial activity and
promote faster decay rates. This seasonal pattern was reflected in both the EDA and
the correlation analysis, where a moderate positive correlation was found between col-
iforms and water temperature. This relationship directly influences model predictions,
as temperature-related features were consistently among the most influential predictors
identified by the SHAP analysis (Figure 10), reinforcing the model’s ability to capture
temperature-driven variability in contamination levels. Moreover, this seasonal behavior
aligns with the typical hydrometeorological dynamics of the Rio de la Plata estuary, where
warmer summer conditions and reduced freshwater dilution favor microbial persistence,
while winter mixing and lower temperatures lead to decreased concentrations [32,33].

The limited predictive power of accumulated precipitation in our model may be
attributed to a combination of spatial, temporal, and representativeness limitations.

e First, the rainfall data used were collected from a monitoring station that is not located
in the immediate vicinity of the coastal sampling sites. This spatial mismatch can
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lead to non-representative precipitation values, particularly in regions where rainfall
events are highly localized and concentrated.

*  Second, there is often a temporal lag between rainfall and the observed increase in fecal
contamination, as runoff takes time to travel through the watershed and transport
fecal coliforms and other pollutants into the water bodies [34]. If water samples
are not collected at intervals that align with these post-rainfall runoff dynamics, the
relationship between precipitation and contamination may be obscured. This was also
confirmed by Suh et al. [15].

¢ Third, only a limited number of the samples in our dataset correspond to periods
shortly after rainfall events. As a result, the model may be trained mostly on “dry-
weather” data (84.8% of the data), where precipitation is not a relevant driver (Repre-
sentative samples), thus diminishing its overall importance in the feature ranking.

These factors together help explain why accumulated precipitation appeared as the
least influential variable in the SHAP (Figure 10), despite its known relevance in the
transport of fecal pollutants.

Building on these variable-specific insights, the overall model performance, our results
showed that both Random Forest and Histogram-based Gradient Boosting achieved very
good performance according to the evaluation criteria proposed by Moriasi et al. [28].
These models demonstrated strong predictive capabilities, with high coefficients of deter-
mination and low error metrics, reflecting their effectiveness in capturing the variability
of fecal coliform concentrations. However, when predictive uncertainty was considered,
Random Forest provided the most reliable balance between accuracy and stability, whereas
Histogram-based Gradient Boosting, despite achieving comparable accuracy, exhibited sub-
stantially higher uncertainty. This highlights the advantage of Random Forest as a robust
choice for environmental datasets, where stability and reliability are critical in addition
to predictive accuracy. These results are consistent with previous local studies, such as
those by Crisci et al. [35] and Bourel et al. [18], which also found that Random Forest and
Boosting models were the most effective algorithms for predicting microbiological water
quality. The convergence of these findings reinforces the robustness of ensemble learning
methods for modeling fecal contamination in coastal and urban water systems.

When compared to other recent studies, our models demonstrate competitive perfor-
mance. For example, Suh et al. [15] applied various machine learning models, including
XGBoost and Convolutional Neural Networks, to predict fecal coliform concentrations
in four major South Korean rivers. Their best-performing model, XGBoost, achieved a
validation NSE of 0.597 in the Han River, which is notably lower than the test NSE of 0.70
achieved by both our Random Forest and Histogram-based Gradient Boosting models.
While their study benefited from a rich dataset spanning eight years and multiple water
quality variables, their relatively lower predictive performance highlights the challenge of
modeling microbial indicators under diverse hydrological conditions. Similarly, Hannan
and Anmala [13] applied Random Forest to predict microbial contamination in surface
waters in the U.S. and reported validation R? values generally ranging from 0.45 to 0.65
depending on the site and indicators. Though not directly comparable to NSE, these metrics
suggest moderate predictive performance, again underscoring the difficulty of generalizing
across sites and indicator types.

In contrast, Sbahi et al. [10] investigated fecal coliform removal from wastewater
using three ML algorithms (ANN, Cubist, and MLR) in controlled laboratory-scale systems.
Their best-performing model (ANN) achieved an R? of 0.953, substantially higher than
ours. However, this difference largely reflects the controlled and homogeneous nature
of their dataset, which minimizes environmental variability and measurement noise. In
real-world, field-based applications such as ours, characterized by fluctuating hydrological,
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meteorological, and anthropogenic drivers, achieving an NSE of 0.70 represents a strong
predictive capability. Our results, therefore, illustrate the robustness of the models under
realistic operational conditions, where data uncertainty and spatial heterogeneity typically
limit performance.

Overall, our models show comparable or superior skill to other recent studies when
accounting for data complexity and study design (Table 8), confirming their potential for
practical applications in urban water quality assessment.

Table 8. Comparison of model performance for fecal coliform prediction across recent studies.

Study Context ML Models Used Data Type/Setting Performance Metric Value
Suhetal. [15] Major rivers in South Korea XGBoost, CNN Field, multi-year dataset NSE (validation) 0.597
Hannan and Anmala [13] Surface waters, USA Random Forest Field, site-specific R? (validation) 0.45-0.65
Sbahi et al. [10] Wastewater, lab-scale ANN, Cubist, MLR Controlled laboratory R? (validation) 0.953
This study (2025) Urban coastal system, Uruguay =~ Random Forest, HGB  Field, variable hydrological regime NSE (test) 0.70

5. Practical Value of the Findings

From an operational and economic perspective, developing a predictive model for
fecal coliform concentrations is both practical and cost-effective. Given that the laboratory
methods for enumerating fecal coliforms (APHA 9222 D [36]) and enterococci (EPA Method
1600 [37]) involve similar membrane filtration procedures, require comparable levels of
technical expertise, and rely on analogously priced consumables and equipment, the overall
effort for monitoring either indicator is equivalent.

However, when both indicators are monitored in parallel, as currently done in Monte-
video, this effectively doubles the required laboratory effort, from sample processing to
incubation and enumeration. Each analysis involves separate media, incubation condi-
tions, and quality control. In this context, deploying a reliable predictive model allows
environmental agencies to reduce analytical redundancy. If enterococci are already be-
ing measured, as they are part of routine monitoring, a robust model can estimate fecal
coliform concentrations without incurring the additional time and cost of performing a
second analysis.

Beyond operational efficiency, predicting continuous fecal coliform concentrations
provides substantial advantages over traditional classification approaches that rely solely
on regulatory thresholds. Continuous predictions enable the detection of subtle trends and
emerging risks, support real-time decision-making, and allow for flexible management
strategies based on risk gradients rather than binary outcomes. This is particularly useful
in managing beach advisories, where microbial levels often fluctuate near regulatory
thresholds, and more nuanced information can support more responsive and adaptive
public health decisions. In addition, this modeling framework provides a foundation for
integration with real-time data sources such as IoT-based monitoring stations or remote-
sensing products, paving the way for operational early warning systems. The models could
also be embedded within decision-support platforms for municipal beach management,
facilitating proactive and data-driven interventions that enhance public health protection.

In addition, this approach enables the extension of fecal coliform predictions to
periods and locations where direct measurements are not available, helping to fill spa-
tiotemporal gaps in monitoring and providing timely information for more adaptive
beach management.

Furthermore, while our discussion has focused on the application of this predic-
tive framework in Montevideo, the portability of our modeling approach should not be
overlooked. Because it leverages widely available environmental and microbial data, the
methodology could be adapted for use in other urban coastal settings. Additionally, our use
of open-access meteorological and water quality datasets, along with transparent code and
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reproducible workflows, supports broader implementation by environmental managers
and researchers.

Nevertheless, several limitations must be acknowledged. One primary challenge
relates to the precipitation data used: rainfall measurements were obtained from a station
several kilometers away from the sampling sites, potentially failing to capture localized
rainfall variability that drives contamination. Although the present study focused on model
development using a pooled dataset to ensure sufficient data density across beaches, future
work will include external validation schemes, such as leave-one-beach-out cross-validation,
to explicitly test spatial transferability and model robustness. Additionally, the temporal
resolution of the meteorological and water quality data, primarily daily measurements,
may be insufficient to detect rapid water quality changes that occur at sub-daily scales,
such as immediate runoff impacts following short but intense rainfall events. The lag time
between rainfall and sampling, combined with relatively few samples collected shortly
after rain events, further restricts the model’s capacity to predict contamination peaks
associated with storm-driven runoff.

Moreover, while the model includes commonly measured environmental variables,
important drivers such as land use dynamics, hydrodynamic conditions, point-source
pollution events, or microbial die-off rates were not explicitly considered. This omission
may limit the explanatory power and predictive accuracy of the models, especially under
changing environmental conditions. In addition, the study did not extensively quantify
model uncertainty, which constrains the ability to assess the confidence or reliability of
predictions, particularly under rare or atypical conditions such as extreme weather events
or accidental discharges.

6. Conclusions

This study demonstrated the potential of machine learning (ML) approaches for
predicting fecal coliform concentrations in urban coastal environments, using Montevideo’s
beaches as a case study. Among the tested models, Random Forest achieved the best
performance, with test NSE values around 0.70, reflecting robust generalization and high
predictive accuracy. SHAP analysis revealed enterococci as the most influential predictor,
underscoring their complementary role in describing microbial contamination pathways,
followed by water temperature and salinity, which capture seasonal and hydrodynamic
variability typical of the Rio de la Plata estuary.

Our three main objectives were successfully addressed:

1.  We developed and validated ML models that provide continuous fecal coliform esti-
mates rather than binary classifications, effectively capturing non-linear relationships
among environmental variables.

2. We demonstrated the practical value of these models for water quality management:
they enable timely, cost-effective estimation of fecal contamination levels, potentially
reducing the need for redundant laboratory analyses when enterococci are already
monitored, and supporting more responsive beach advisories based on continuous
risk levels.

3. By assessing feature importance using SHAP, we identified key environmental drivers
(enterococci, temperature, and salinity), providing new insight into the processes
governing microbial dynamics in estuarine waters.

From an operational perspective, these findings highlight the feasibility of integrat-
ing ML models into existing monitoring frameworks to enhance predictive capacity and
resource efficiency. As discussed in Section 5 (“Practical Value of the Findings”), this
approach can inform more adaptive and data-driven coastal management strategies in
Montevideo and similar urban coastal systems.
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While the models performed well, several limitations remain. These include the
coarse spatial and temporal resolution of the input data, the limited number of samples
following rainfall events, and the absence of dynamic predictors such as tidal influence,
land-use changes, and microbial decay rates. Addressing these limitations in future work,
through denser monitoring networks, higher-frequency data collection, and integration
of real-time datasets, will further strengthen model reliability and applicability for early-
warning systems.

In summary, this study demonstrates that integrated, interpretable ML approaches
can provide both accurate predictions and actionable environmental insights, contributing
to more efficient microbial water quality management. Nonetheless, their generalization to
other settings should be pursued cautiously, supported by site-specific data and validation.
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