english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52550 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorArmand-Ugon, Pablo-
dc.contributor.authorGoliatt, Leonardo-
dc.contributor.authorCastro, Alberto-
dc.contributor.authorGorgoglione, Angela-
dc.coverage.spatialDepartamento de Montevideo, Uruguayes
dc.date.accessioned2025-11-20T14:53:58Z-
dc.date.available2025-11-20T14:53:58Z-
dc.date.issued2025-
dc.identifier.citationArmand-Ugon, P., Goliatt, L., Castro, A. y otros. "Machine learning for predicting coliform concentrations at Montevideo beaches : Identifying key environmental drivers for coastal water quality management". Earth. [en línea]. 2025, vol. 6, no. 4, pp. 1-24. DOI: 10.3390/earth6040147.es
dc.identifier.issn2673-4834-
dc.identifier.urihttps://www.mdpi.com/2673-4834/6/4/147-
dc.identifier.urihttps://hdl.handle.net/20.500.12008/52550-
dc.description.abstractMonitoring microbial water quality at recreational beaches is essential to safeguard public health, with fecal coliforms serving as key indicators of contamination. This study applies machine learning (ML) techniques to predict fecal coliform concentrations at Montevideo’s urban beaches, aiming to support proactive and data-driven coastal water quality management. Using an extensive monitoring dataset, we developed and calibrated five ML models to predict continuous fecal coliform levels, improving upon traditional threshold-based methods. Among these, Random Forest (RF) and Histogram-based Gradient Boosting (HGB) models showed very good predictive performance, with RF yielding the most consistent estimates of microbial contamination and HGB showing comparable accuracy but higher predictive uncertainty. The models were optimized using cross-validation and Optuna, with mean squared error as the loss function. Feature importance analysis using SHAP values revealed that Enterococcus concentrations were the most influential predictor, followed by water temperature and salinity. Seasonal patterns in coliform levels were also identified, likely linked to fluctuations in water temperature. These findings provide actionable insights into the dynamics of microbial contamination and highlight the potential of ML models for early warning systems, adaptive monitoring, and improved risk communication. This integrative approach not only enhances predictive performance but also advances our understanding of the environmental processes influencing water quality in urban coastal systems.es
dc.description.sponsorshipEsta investigación fue financiada por la Agencia Nacional de Investigación e Innovación (ANII), Proyecto número VCT-1-2024-2-184149.es
dc.format.extent24 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.publisherMDPIes
dc.relation.ispartofEarth, vol. 6, no. 4, dec. 2025, pp. 1-24, DOI: 10.3390/earth6040147.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectFecal coliformses
dc.subjectMachine learninges
dc.subjectBeach water qualityes
dc.subjectHydroinformaticses
dc.titleMachine learning for predicting coliform concentrations at Montevideo beaches : Identifying key environmental drivers for coastal water quality managementes
dc.typeArtículoes
dc.contributor.filiacionArmand-Ugon Pablo, Universidad de la República (Uruguay). Facultad de Agronomía.-
dc.contributor.filiacionGoliatt Leonardo, Federal University of Juiz de Fora, Brazil-
dc.contributor.filiacionCastro Alberto, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionGorgoglione Angela, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
dc.identifier.doi10.3390/earth6040147-
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
AGCG25.pdfVersión publicada1,75 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons