english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52410 Cómo citar
Título: Simulating dissolved oxygen concentrations at the watershed scale : A machine learning approach with physical constraints
Autor: Pertusso, Pedro
Pou, Martina
Vilaseca, Federico
Castro, Alberto
Gorgoglione, Angela
Tipo: Ponencia
Palabras clave: Water quality, Dissolved oxygen, Machine learning models, Hydroinformatics
Fecha de publicación: 2026
Resumen: This study focuses on simulating dissolved oxygen (DO) concentrations at the watershed scale using machine learning (ML) models, with an emphasis on incorporating domain constraints to improve prediction accuracy. The main objectives are to evaluate the performance of different ML models, assess the impact of physical and spatial dependencies, and identify the most critical features influencing DO simulation. Random Forest (RF), Extra Trees (ET), and Histogram-based Gradient Boosting (HGB) were selected for this study and trained using a set of input variables, including water and air temperature, and other hydrological information. Model performance was assessed by calculating Mean Square Error (MSE), Mean Absolute Error (MAE), and Nash-Sutcliffe Efficiency (NSE). The best model-metric combination was selected for each station, and the results were satisfactory for most monitoring stations in the basin. The feature selection analysis, run with SHapley Additive exPlanations (SHAP), was designed to capture spatial, temporal, and physical dependencies, ensuring that the models remained accurate and aligned with established physical principles. Temperature-related variables were found to be the most significant predictors of DO levels. These outcomes demonstrate the potential of ML approaches with physical constraints to effectively predict DO concentrations and contribute to better-informed water quality management in natural watersheds.
EN: Computational Science and Its Applications – ICCSA 2025 Workshops. ICCSA 2025. Lecture Notes in Computer Science, vol. 15891. Springer, Cham. https://doi.org/10.1007/978-3-031-97617-9_21.
Financiadores: Este trabajo fue financiado por la Agencia Nacional de Investigación e Innovación (ANII), proyecto FMV-3-2022-1-172720.
Citación: Pertusso, P., Pou, M., Vilaseca, F. y otros. Simulating dissolved oxygen concentrations at the watershed scale : A machine learning approach with physical constraints [en línea]. EN: Computational Science and Its Applications – ICCSA 2025 Workshops. ICCSA 2025. Lecture Notes in Computer Science, vol. 15891, pp. 319–334. DOI: 10.1007/978-3-031-97617-9_21.
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PPVCG26.pdfCamera-Ready1,5 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons