english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52410 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPertusso, Pedro-
dc.contributor.authorPou, Martina-
dc.contributor.authorVilaseca, Federico-
dc.contributor.authorCastro, Alberto-
dc.contributor.authorGorgoglione, Angela-
dc.date.accessioned2025-11-12T14:25:51Z-
dc.date.available2025-11-12T14:25:51Z-
dc.date.issued2026-
dc.identifier.citationPertusso, P., Pou, M., Vilaseca, F. y otros. Simulating dissolved oxygen concentrations at the watershed scale : A machine learning approach with physical constraints [en línea]. EN: Computational Science and Its Applications – ICCSA 2025 Workshops. ICCSA 2025. Lecture Notes in Computer Science, vol. 15891, pp. 319–334. DOI: 10.1007/978-3-031-97617-9_21.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/52410-
dc.description.abstractThis study focuses on simulating dissolved oxygen (DO) concentrations at the watershed scale using machine learning (ML) models, with an emphasis on incorporating domain constraints to improve prediction accuracy. The main objectives are to evaluate the performance of different ML models, assess the impact of physical and spatial dependencies, and identify the most critical features influencing DO simulation. Random Forest (RF), Extra Trees (ET), and Histogram-based Gradient Boosting (HGB) were selected for this study and trained using a set of input variables, including water and air temperature, and other hydrological information. Model performance was assessed by calculating Mean Square Error (MSE), Mean Absolute Error (MAE), and Nash-Sutcliffe Efficiency (NSE). The best model-metric combination was selected for each station, and the results were satisfactory for most monitoring stations in the basin. The feature selection analysis, run with SHapley Additive exPlanations (SHAP), was designed to capture spatial, temporal, and physical dependencies, ensuring that the models remained accurate and aligned with established physical principles. Temperature-related variables were found to be the most significant predictors of DO levels. These outcomes demonstrate the potential of ML approaches with physical constraints to effectively predict DO concentrations and contribute to better-informed water quality management in natural watersheds.es
dc.description.sponsorshipEste trabajo fue financiado por la Agencia Nacional de Investigación e Innovación (ANII), proyecto FMV-3-2022-1-172720.es
dc.format.extent17 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartofComputational Science and Its Applications – ICCSA 2025 Workshops. ICCSA 2025. Lecture Notes in Computer Science, vol. 15891. Springer, Cham. https://doi.org/10.1007/978-3-031-97617-9_21.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectWater qualityes
dc.subjectDissolved oxygenes
dc.subjectMachine learning modelses
dc.subjectHydroinformaticses
dc.titleSimulating dissolved oxygen concentrations at the watershed scale : A machine learning approach with physical constraintses
dc.typePonenciaes
dc.contributor.filiacionPertusso Pedro, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionPou Martina, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionVilaseca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCastro Alberto, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionGorgoglione Angela, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PPVCG26.pdfCamera-Ready1,5 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons