Simulating Dissolved Oxygen Concentrations at
the Watershed Scale: A Machine Learning
Approach with Physical Constraints
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Abstract. This study focuses on simulating dissolved oxygen (DO) con-
centrations at the watershed scale using machine learning (ML) models,
with an emphasis on incorporating domain constraints to improve pre-
diction accuracy. The main objectives are to evaluate the performance of
different ML models, assess the impact of physical and spatial dependen-
cies, and identify the most critical features influencing DO simulation.
Random Forest (RF), Extra Trees (ET), and Histogram-based Gradient
Boosting (HGB) were selected for this study and trained using a set of
input variables, including water and air temperature, and other hydrolog-
ical information. Model performance was assessed by calculating Mean
Square Error (MSE), Mean Absolute Error (MAE), and Nash-Sutcliffe
Efficiency (NSE). The best model-metric combination was selected for
each station, and the results were satisfactory for most monitoring sta-
tions in the basin. The feature selection analysis, run with SHapley Addi-
tive exPlanations (SHAP), was designed to capture spatial, temporal,
and physical dependencies, ensuring that the models remained accurate
and aligned with established physical principles. Temperature-related
variables were found to be the most significant predictors of DO levels.
These outcomes demonstrate the potential of ML approaches with phys-
ical constraints to effectively predict DO concentrations and contribute
to better-informed water quality management in natural watersheds.

Keywords: Water quality - Dissolved oxygen - Machine learning models
- Hydroinformatics.

1 Introduction

Water quality management in urban watersheds is a critical component of sus-
tainable development. Urbanization increases impervious surfaces, alters hydro-
logical cycles, and intensifies pollutant loads entering aquatic systems, often lead-
ing to degraded water quality [1]. Effective monitoring and predictive modeling
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of water quality are essential for supporting decision-making processes that aim
to protect public health, maintain ecosystem services, and ensure the resilience of
urban water supplies [2]. In the context of global sustainability goals, managing
urban water quality contributes directly to achieving clean water and sanitation
(SDG 6), sustainable cities and communities (SDG 11), and climate action (SDG
13), emphasizing the need for robust, data-driven tools like those developed in
this study.

Dissolved oxygen (DO) is a crucial indicator of water quality, and it plays
a key role in maintaining the health of the aquatic ecosystem and sustainable
biodiversity [3]. In fact, adequate DO levels are essential for the survival of fish,
invertebrates, and microbial communities that contribute to ecosystem function-
ing. On the other side, low DO concentrations can lead to hypoxic or even anoxic
conditions, causing fish death, modifying biogeochemical cycles, and decreasing
overall water usability for human consumption, industry, and recreation [4].

In watersheds like the Santa Lucia one, located in Uruguay (South Amer-
ica), which serves as the primary drinking water source for more than half of
the Uruguayan population, understanding and predicting DO dynamics is essen-
tial for the sustainability of water resource management [5]. This is particularly
important due to the increasing pressures from agricultural runoff, wastewater
discharge, and climate variability, which contribute to DO concentration varia-
tions within the Santa Lucia watershed [6].

However, DO concentrations are influenced by a complex interaction of phys-
ical, chemical, and biological processes rather than a single influencing factor
[7]. Hydrological processes, such as streamflow variability and groundwater ex-
changes, impact oxygen diffusion and dilution capacity. Temperature signifi-
cantly affects the amount of oxygen that can dissolve in water and the rates
at which microbes respire. At the same time, nutrient inputs, especially nitrogen
and phosphorus from agricultural and urban activities, can cause eutrophica-
tion. This process results in a reduction in oxygen levels due to algal blooms
and their subsequent decomposition. Furthermore, human activities like defor-
estation, land use and land cover alterations, and industrial waste discharges
influence these processes, creating difficulties for managing water quality [8] [9].
Considering this complexity, the capacity to accurately model DO levels is cru-
cial for evaluating water quality threats, identifying the most significant sources
of pollution, and guiding policy decisions.

Recent advances in machine learning (ML) have demonstrated very good
performance in modeling water quality parameters, including DO [10] [11]. In
contrast to conventional physically-based models, machine learning techniques
leverage large datasets to achieve high predictive performance by capturing com-
plex relationships between environmental variables and DO levels [12]. Studies
have applied various ML techniques, such as artificial neural networks (ANNs),
random forests (RF), and support vector machines (SVMs), demonstrating their
potential to improve predictive precision [13] [14]. Furthermore, physics-informed
ML methods, which integrate domain knowledge into data-driven models, have
gained attention to improve interpretability and reliability in environmental ap-
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plications [15]. Despite these advances, there are still challenges in defining the
optimal model structure, selecting relevant input features, and incorporating
physical constraints to improve generalizability.

A major limitation in current research is the lack of in-depth evaluations
of ML-based DO simulations at the watershed scale. While many studies fo-
cus on localized or site-specific modeling [16] [17], relatively few have investi-
gated large-scale applications that incorporate spatial variability and different
environmental conditions. Furthermore, the influence of domain constraints on
ML performance remains underexplored, particularly in the context of integrat-
ing hydrological and biogeochemical principles into data-driven approaches. Ad-
dressing these gaps is crucial for improving the robustness and applicability of
ML techniques in water quality assessments.

To bridge this gap, this study focuses on the Santa Lucia River basin and
aims to (1) simulate DO concentrations at the watershed scale using different
ML models, (2) evaluate the impact of domain constraints on simulation results,
and (3) identify and quantify the key variables influencing model performance.
By addressing these objectives, this research will contribute to advancing ML
applications in water quality modeling by demonstrating the effectiveness of
domain-informed feature selection and assessing the performance of multiple
algorithms across varied water quality targets.

2 Materials and Methods

2.1 Study site

The Santa Lucia River Basin is a strategically important watershed in Uruguay,
providing raw water for drinking and supplying over half of the country’s pop-
ulation (Figure 1). It also holds substantial economic value, concentrating 32%
of the national rural population and serving as one of the main food production
hubs. Additionally, the basin supports significant industrial activity [18] [19].

However, human activities have led to notable water quality degradation.
According to the Action Plan [20], diffuse pollution sources, primarily from agri-
culture (crop production, horticulture, forage crops, dairy farming, feedlot oper-
ations, and pig and poultry farms), account for approximately 75% of the total
nitrogen load and 62% of the total phosphorus load. The remaining pollution
originates from point sources, including industrial activities (meatpacking, dairy,
and leather industries), agroindustry, and domestic wastewater discharges due
to inadequate sanitation [21].

The basin under study spans 13,376 km?, with a perimeter of 1,014 km and
a compactness index of 2.46 (Figure 1). It is distributed across six departments:
Florida (35%), San José (25%), Canelones (17%), Lavalleja (16%), Flores (6%),
and Montevideo (1%). Elevation ranges from 390.5 meters in Lavalleja to -1.20
meters near the basin’s outlet, with an average slope of 1.92%. The climate is
temperate, with four distinct seasons, annual precipitation between 1,000 mm
and 1,500 mm, and temperatures varying from 3°C to 30°C [5].
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Fig. 1: Study area and location of measurement stations.

2.2 Dataset

This study utilizes hydrometric, meteorological, and water quality data obtained
from national monitoring networks.

Hydrometric data consist of streamflow and water level, recorded by the
Uruguayan National Water Board from January 1, 1980, to July 4, 2023. Mea-
surements were taken at 8 monitoring stations, represented by black squares in
Figure 1.

Meteorological data were gathered from two institutions: the National Insti-
tute of Agricultural Research and the Uruguayan Institute of Meteorology. The
Las Brujas station provided daily records of Penman evapotranspiration, rela-
tive humidity, mean air temperature, maximum air temperature, minimum air
temperature, and wind speed, covering the period from January 1, 1980, to July
4, 2023. Additionally, precipitation was recorded daily by 21 conventional rain
gauges between January 1, 1980, and June 27, 2023. The meteorological stations
are represented in green and yellow dots in Figure 1.

Water quality data were collected by the National Board for Quality and
Environmental Assessment between January 18, 2011, and December 23, 2022,
at 25 monitoring stations (orange triangles in Figure 1). From the initial 25
water quality monitoring stations, we selected nine for this study based on the
availability of concurrent water quality and streamflow data, as well as their

Santa Lucia (LaCalera)
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strategic locations within the basin. The selected stations are XSLH020 (Florida,
Puente Ruta 5), XSLU040 (Paso Pache, Ruta 5 nueva), XSLUO050 (Santa Lucia,
Ruta 11), XCPA020 (Paso de los Troncos), XSLU010 (Paso Roldan), EPSE020,
XSJO010, XSJO020, and XSLH010. EPSE020 was included due to its critical
position at the lake’s outlet, serving as a key control point for water dynamics,
while XSJO010, XSJO020, and XSLH010 were chosen to represent the upstream
sections of the watershed. This selection ensures comprehensive spatial represen-
tation and reliable hydrological and water quality data for robust model devel-
opment. The dataset includes key physicochemical and biological parameters:
total phosphorus, total nitrogen, nitrate, nitrite, ammonium, phosphate, total
solids, total suspended solids, turbidity, water temperature, dissolved oxygen,
biochemical oxygen demand, chlorophyll-a, glyphosate, pH, and conductivity.
This dataset is publicly accessible through the National Environmental Obser-
vatory.

Due to significant missing data, this dataset was previously imputed in our
earlier work [15], and the resulting monthly dataset was used for this study.

2.3 Modeling

In this study, three machine learning models were implemented and compared
to simulate DO concentrations in the Santa Lucia River Basin. Each model has
different strengths in terms of accuracy, computational efficiency, and ability to
capture complex environmental relationships.

Random Forest (RF) RF is an ensemble learning method based on decision
trees, where multiple trees are trained using different subsets of the data, and
their predictions are averaged to improve accuracy and reduce overfitting. RF
has the ability to detect nonlinear correlations and handle noisy data, making it
an adequate tool for environmental modeling [22].

Extra Trees Regressor (ET) ET is a variation of RF that adds more random-
ness to the decision tree building process. On the one hand, RF determines the
optimal split points using information gain. On the other hand, ET randomly
selects the split points, increasing the variance and helping to reduce the over-
fitting. This approach enhances computational efficiency compared to RF and
is effective with high-dimensional datasets, making it a valuable tool for water
quality modeling [23].

Histogram-based Gradient Boosting Regressor (HGB) HGB is an op-
timized version of Gradient Boosting. It improves computational efficiency by
discretizing continuous features into discrete bins before training. This approach
makes the training process much faster and reduces memory consumption, al-
lowing scalability for large datasets. HGB also has the advantage of handling
missing data effectively [24]. However, a very careful hyperparameter tuning is
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required to avoid overfitting, and it may be less interpretable than tree-based
models like RF and ET.

2.4 Model training and testing

To ensure robust model performance, we adopted a 5-fold cross-validation ap-
proach for hyperparameter optimization. This method divides the dataset into
five subsets, using four for training and one for validation in each iteration,
ensuring that every instance contributes to both training and validation sets.
By averaging the outcomes from each fold, cross-validation assesses the model’s
performance, helping to decrease overfitting and enhance generalization while
reducing data loss.

Furthermore, an "all-against-all" evaluation framework was applied, consid-
ering three different machine learning models (RF, ET, and HGB) and three
different objective functions (Nash-Sutcliffe Efficiency (NSE), Mean Absolute
Error (MAE), and Mean Squared Error (MSE)). This approach ensured that
the best model-metric combination was selected at each station, providing an
in-depth assessment of predictive accuracy and robustness.

Once the optimal hyperparameters were selected, each model was trained
with the complete training set and evaluated using the NSE as the primary
performance metric. The final selection of the best-performing model for each
target variable was based on the highest NSE value in the test set.

2.5 Model performance evaluation

Three objective functions were considered for model optimization: NSE, MAE,
and MSE. A rigorous "all-against-all" approach was applied, where each model
was evaluated using all three metrics. The best-performing model-metric pair
was then selected individually for each monitoring station.

Nash-Sutcliffe efficiency (NSE) NSE measures how well the simulated values
match observed data, with values closer to 1 indicating better performance. It
is defined as:

2?:1(02‘ — Pi)2
Z?:I(Oi - O)Q

where O; and P; are observed and predicted values, respectively, and O is
the mean of observed values.

NSE=1-— (1)

Mean Absolute Error (MAE) MAE quantifies the average magnitude of
errors without considering their direction. A lower MAE indicates better model
accuracy. It is given by:

1 n

=1
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Mean Squared Error (MSE) MSE penalizes larger errors more heavily than
MAE by squaring the residuals. It is defined as:

n

MSE = 3 (0; - Py )

Kling-Gupta Efficiency (KGE) The KGE metric was also employed to verify
the robustness of the model predictions. KGE combines correlation, bias, and
variability components into a single efficiency score, providing a more holistic
assessment of model performance. It is defined as:

KGE=1—/(r—12+(a—1)2+4 (8- 1) (4)

where r is the Pearson correlation coefficient between observed and predicted
values, o = Z—Z is the ratio of the standard deviation of predicted (o) to observed
values (0,), and 8 = Z—’; is the bias ratio between the mean of predicted (p,) and
observed values (p,) [25]. A KGE value closer to 1 indicates better agreement
between observed and predicted data, accounting for both precision and bias in
the simulation.

This selection process ensured that the final model configuration for each
station maximized predictive accuracy while maintaining robustness.

It is important to clarify that in this study, the MSE was employed as the loss
function for training the three machine learning models (RF, ET, and HGB).
During the hyperparameter optimization process, the three performance metrics
were utilized as objective functions in an "all-against-all" approach to identify
the best model-metric combination for each station. Finally, the evaluation of
the models on the testing set was conducted using NSE and KGE to assess their
predictive accuracy and reliability.

2.6 Physical constraints applied to machine learning models

The process begins with the calculation of the correlation matrix for the input
variables using Pearson, Spearman, and Kendall methods. Variables with a me-
dian correlation coefficient lower than 0.5 with the target variable are discarded
to ensure that only the most relevant predictors are considered.

Next, both spatial and physical dependencies are taken into account. Spa-
tial dependencies evaluate the location of monitoring stations, discarding those
situated downstream of the target station to avoid information leakage. Physi-
cal dependencies consider the inherent physical relationships between variables.
This means that even if a variable exhibits a correlation lower than 0.5 with
the target variable, it may still be included in the model if a strong physical
relationship exists. For example, water temperature (WT) is highly dependent
on air temperature (AT). Therefore, even if the correlation between WT and AT
is below 0.5, AT is included as an input variable in the WT prediction model
due to their known physical connection [15].
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Since all target variables have a monthly frequency, variables with a daily
frequency are resampled to capture their monthly evolution. This is done by
calculating their monthly average.

Many variables exhibit high autocorrelation. For instance, water tempera-
ture measured at a downstream station is often strongly correlated with mea-
surements from an upstream station. To prevent information leakage and ensure
model independence, input variables that contain direct or derived information
about the target variable are excluded from the training process, ensuring that
the models remain independent of the target variable.

Finally, additional techniques are applied to better reflect spatial and tem-
poral relationships. The Inverse Distance Weighting (IDW) method is used to
assign higher weights to observations from nearby sites, effectively reflecting spa-
tial relationships. To address variability over time, the Exponentially Weighted
Moving Average (EWMA) is implemented, assigning more importance to recent
data points. These methods enhance the model’s ability to identify significant
patterns while ensuring physical consistency in the simulation of DO levels. A
thorough description of such methods is reported in [15].

2.7 Feature importance analysis

In this study, we adopted the SHapley Additive exPlanations (SHAP) method
to compute the contribution of each input feature for each ML model considered
[26]. SHAP values provide an in-depth understanding of the impact that each
feature has on model predictions, delivering deeper insights into how the model
makes its decisions and behaves under different environmental conditions.

This analysis helps to identify not only the most influential variables but also
to determine whether the model is able to capture the underlying physical pro-
cesses that govern DO dynamics. By quantifying each variable’s impact, SHAP
enhances model interpretability and allows us to be sure that the predictions
align with the real environmental processes.

3 Results and discussion

3.1 Hyperparameter optimization

To ensure optimal performance, we conducted hyperparameter optimization for
the three different ML models (RF, ET, HGB). Each model was trained and eval-
uated using the three distinct performance metrics (NSE, MAE, MSE), resulting
in a total of nine different trained models.

The optimization was performed using Optuna with a 5-fold cross-validation
strategy to enhance model generalization and prevent overfitting. Table 1 sum-
marizes the optimal hyperparameters obtained for the best models after the
tuning process.



Simulating Dissolved Oxygen Concentrations at the Watershed Scale

9

Table 1: Optimal hyperparameters for the best trained model at each station.

Station

Trained Model

Hyperparameters

EPSE020

RF (MSE)

max_ depth = 22
min_samples_leaf = 5
min_samples_ split = 6

XCPA020

RF (NSE)

max_depth = 25
min_samples leaf = 3
min_samples_split = 8

XSJO010

HGB (NSE)

12 _regularization = 0.1997
learning rate = 0.0233
max_leaf nodes = 97

XSJO020

ET (MSE)

max_ depth = 25
min_samples_leaf = 7

XSLHO010

ET (MSE)

max_depth =7
min_samples leaf = 2
min_samples split = 9

XSLH020

ET (NSE)

max_ depth = 6
min_samples leaf = 6
min_samples_split = 12

XSLUO010

RF (MSE)

max_depth = 11
min_samples_leaf = 3
min_samples split = 7

XSLU040

HGB (MAE)

12 _regularization = 0.6274
learning rate = 0.0168
max_leaf nodes = 106

XSLU050

HGB (MSE)

12 _regularization = 0.6538
learning_rate = 0.0358
max_ leaf nodes = 103
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3.2 Simulation results

Once the optimal hyperparameters were identified, the models were evaluated
using the best configurations obtained during the optimization process. Each
model was tested under different performance metrics (NSE, MAE, and MSE) in
an exhaustive pairwise evaluation approach, where all models were assessed using
each metric. This allowed for a comprehensive comparison of their predictive
capabilities.

After evaluating the results, the best model-metric combination was selected
based on overall performance across different stations. Table 2 summarizes the
final results, detailing the best-performing model, the optimal metric, and the
NSE values for both training and testing at each monitoring station. Figure 2
presents boxplots comparing predicted and observed OD values across all sta-
tions, while Figure 3 presents two plots comparing simulated and observed OD
time series at two stations (XSLU050 and XSLHO010) as examples.

Table 2: NSE and KGE values for training and testing of the best-trained model
at each station.

Station |Best Model (Metric)|Train NSE|Train KGE|Test NSE|Test KGE
EPSE020 RF (MSE) 0.81 0.77 0.44 0.46
XCPA020 RF (NSE) 0.82 0.80 0.81 0.90
XSJOO010 HGB (NSE) 0.80 0.76 0.51 0.74
XSJO020 ET (MSE) 0.82 0.83 0.66 0.84
XSLH010 ET (MSE) 0.92 0.89 0.84 0.88
XSLHO020 ET (NSE) 0.82 0.83 0.88 0.93
XSLUO010 RF (MSE) 0.87 0.83 0.66 0.84
XSLU040 HGB (MAE) 0.31 0.27 -0.05 -0.15
XSLU050 HGB (MSE) 0.83 0.81 -0.02 0.43

The overall model performance across the study area was satisfactory in most
cases, with 7 out of 9 stations achieving an NSE value above 0.4, indicating that
the models were able to capture the variability of DO dynamics reasonably
well. Among these, five stations demonstrated particularly strong performance
(NSE > 0.65), suggesting that the chosen input variables and model configura-
tions were well-suited for those locations.

However, two stations, XSLU040 and XSLUO050, exhibited unsatisfactory re-
sults. This could be attributed to several factors, including data quality issues
or unaccounted local hydrodynamic processes.

Fig. 4 shows the number of times each model and each performance metric
were selected as the optimal choice across all stations.

The results indicate that no single model consistently outperformed the oth-
ers, as each of the three models was selected three times. This suggests that
model performance is highly dependent on the specific characteristics of each
station and dataset rather than on the intrinsic superiority of one algorithm
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Simulated vs. Observed Dissolved Oxygen Levels Across Monitoring Stations

[N
©

Data Source
B Observed
O Simulated

= [ =
N IS o

Dissolved Oxygen
=
o

L INTIE L Rl

EPSE020 XCPA020 XSJO010 XSJO020 XSLH010 XSLH020 XSLUO10 XSLUO40 XSLUO50
Station

Fig. 2: Simulated and observed DO levels across monitoring stations. Green box-
plots represent observed values, while red boxplots represent simulated values.

over the others. Factors such as local hydrodynamic conditions, data distribu-
tion and availability, and the influence of different input variables likely played a
role in determining which model was best suited for each case. Additionally, the
differences in how each algorithm handles feature interactions and nonlinearity
may have contributed to this even distribution.

Regarding the performance metrics, MSE was selected as the best metric five
times, compared to the MAE, which was chosen only once, and the NSE, which
was selected three times. This preference for MSE may be explained by its sen-
sitivity to large errors, which makes it more effective in optimizing models that
aim to minimize extreme deviations in DO predictions. Since water quality data
can exhibit occasional high variability due to sudden changes in environmental
conditions (e.g., rainfall events, pollution discharges), MSE’s emphasis on penal-
izing larger errors likely led to better model selection in most cases. In contrast,
MAE gives equal weight to all errors, which may not be ideal for capturing the
nuances of DO fluctuations. Meanwhile, NSE, though widely used in hydrolog-
ical modeling, balances both variance and bias, but its performance may have
been influenced by the characteristics of the dataset at specific stations.

3.3 Feature importance results

The feature importance analysis was conducted using SHAP values, which were
calculated based on the best-performing model at each station. This approach
allowed for a detailed assessment of the contribution of each input variable to the
DO predictions. For each monitoring station, the most influential variables were
ranked, providing insights into the dominant drivers of DO variability across
the watershed. In Figure 5, the SHAP results for the stations XSLH020 and
XCPAO020 are reported as an example.

The SHAP analysis revealed that the most influential variables for DO simu-
lation were water temperature at the target station and at the nearest upstream
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Fig.4: Number of times each model (a) and each performance metric (b) was
selected as the best.

station, along with air temperature (minimum, average, and maximum). These
findings align with well-established physical and biochemical processes governing
DO dynamics in freshwater systems [5].

Water temperature plays a key role in predicting DO concentration due to
its direct effect on oxygen solubility and biological activity. As temperature in-
creases, oxygen solubility decreases, leading to lower DO concentrations. More-
over, higher temperatures accelerate microbial and biochemical oxygen demand,
further reducing available oxygen. The strong impact of water temperature at
the target station is expected, as it directly influences local DO conditions. The
importance of upstream water temperature, instead, suggests that thermal con-
ditions propagate downstream, impacting DO levels at the target monitoring
station.

Air temperature, particularly its minimum, average, and maximum values,
also emerged as a key predictor. This is consistent with its role in controlling
water temperature through heat exchange processes [5]. The inclusion of multiple
air temperature statistics suggests that both short-term (daily variations) and
long-term (monthly trends) thermal dynamics affect DO fluctuations.

The dominance of temperature-related variables in DO predictions indicates
that the model successfully captures the thermal dependency of DO dynamics.

4 Conclusions

This study aimed to simulate DO concentrations at the watershed scale using
ML models, assess the impact of physical constraints on the simulation results,
and identify the key variables driving model performance. By incorporating do-
main knowledge through physical constraints, the models were able to capture
essential environmental relationships, improving the realism and accuracy of DO
predictions.

The models were optimized using hyperparameter tuning, and performance
was evaluated through a rigorous "all-against-all" approach, selecting the best
model-metric pair for each station. The results revealed no clear preference for
any single model, as RF, ET, and HGB were each chosen three times. Among the
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Fig.5: SHAP values for the best-performing models at stations XSLH020 and
XCPA020.
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evaluation metrics, MSE was selected more frequently than the other metrics,
highlighting its greater sensitivity to large errors during model training.

The models performed satisfactorily in most stations, with seven out of nine
stations achieving NSE values above 0.4 and five stations yielding very good re-
sults. However, two stations (XSLU040 and XSLU050) exhibited unsatisfactory
performance, possibly due to data limitations or the absence of key predictors.

The feature importance analysis shows that water temperature, both at the
target station and an upstream station, along with air temperature, were the
most influential variables in the DO simulations. These results align with the
known physical processes governing DO dynamics, where temperature plays a
crucial role in oxygen solubility and biological activity.

In conclusion, the study demonstrates the effectiveness of applying ML mod-
els with physical constraints to simulate DO concentrations at the watershed
scale. The results emphasize the importance of incorporating domain-specific
knowledge into model design while also pointing to the potential for future im-
provements by expanding the range of input variables and refining the model’s
physical assumptions.
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