english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52357 Cómo citar
Título: Addressing class imbalance problems in data-driven rainfall-runoff modelling
Autor: Vilaseca, Federico
Chreties, Christian
Castro, Alberto
Gorgoglione, Angela
Tipo: Ponencia
Palabras clave: Hidrología, Modelación hidrológica, Aprendizaje automático, Desbalance de clases, Hydrology, Hydrological modelling, Machine learning, Class imbalance
Fecha de publicación: 2024
Resumen: This paper proposes a methodology based on data augmentation to improve the performance of data-driven hydrological models during high flows. Problems in the representation of high discharges by data-driven models were observed in previous research, which the authors of this work attribute, in part, to the shortage of high-flow observations in the training data. This creates an imbalance problem that biases the learning process towards the representation of low flows. The proposed methodology was tested for models generated with the Random Forest machine learning algorithm, implemented in two incremental watersheds of the Santa Lucía Chico basin in Uruguay. Results showed an average increase in performance of 18 % for Nash-Sutcliffe efficiency and 37 % for peak-flow Nash-Sutcliffe efficiency. The work allows us to conclude that class imbalance is a relevant issue affecting the performance of data-driven rainfall-runoff models under certain conditions and that the proposed methodology is useful to tackle it, potentially improving model performance for high flows.
Editorial: IAHR
EN: 8th IAHR Europe Congress : Water - Across Boundaries, Lisbon, Portugal, 4-7 jun. 2024, pp. 15-23.
Financiadores: Beca Doctorado CAP
Citación: Vilaseca, F., Chreties, C., Castro, A. y otros. Addressing class imbalance problems in data-driven rainfall-runoff modelling [en línea]. EN: 8th IAHR Europe Congress : Water - Across Boundaries, Lisbon, Portugal, 4-7 jun. 2024, pp. 15-23.
Cobertura geográfica: Cuenca del Río Santa Lucía Chico, Uruguay.
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
VCCG24.pdfVersión publicada1,59 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons