Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/52357
Cómo citar
Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Vilaseca, Federico | - |
| dc.contributor.author | Chreties, Christian | - |
| dc.contributor.author | Castro, Alberto | - |
| dc.contributor.author | Gorgoglione, Angela | - |
| dc.coverage.spatial | Cuenca del Río Santa Lucía Chico, Uruguay. | es |
| dc.date.accessioned | 2025-11-06T15:58:58Z | - |
| dc.date.available | 2025-11-06T15:58:58Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.citation | Vilaseca, F., Chreties, C., Castro, A. y otros. Addressing class imbalance problems in data-driven rainfall-runoff modelling [en línea]. EN: 8th IAHR Europe Congress : Water - Across Boundaries, Lisbon, Portugal, 4-7 jun. 2024, pp. 15-23. | es |
| dc.identifier.uri | https://www.iahr.org/library/regional?pid=582 | - |
| dc.identifier.uri | https://www.iahr.org/library/infor?pid=38533 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.12008/52357 | - |
| dc.description.abstract | This paper proposes a methodology based on data augmentation to improve the performance of data-driven hydrological models during high flows. Problems in the representation of high discharges by data-driven models were observed in previous research, which the authors of this work attribute, in part, to the shortage of high-flow observations in the training data. This creates an imbalance problem that biases the learning process towards the representation of low flows. The proposed methodology was tested for models generated with the Random Forest machine learning algorithm, implemented in two incremental watersheds of the Santa Lucía Chico basin in Uruguay. Results showed an average increase in performance of 18 % for Nash-Sutcliffe efficiency and 37 % for peak-flow Nash-Sutcliffe efficiency. The work allows us to conclude that class imbalance is a relevant issue affecting the performance of data-driven rainfall-runoff models under certain conditions and that the proposed methodology is useful to tackle it, potentially improving model performance for high flows. | es |
| dc.description.sponsorship | Beca Doctorado CAP | es |
| dc.format.extent | 9 p. | es |
| dc.format.mimetype | application/pdf | es |
| dc.language.iso | en | es |
| dc.publisher | IAHR | es |
| dc.relation.ispartof | 8th IAHR Europe Congress : Water - Across Boundaries, Lisbon, Portugal, 4-7 jun. 2024, pp. 15-23. | es |
| dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
| dc.subject | Hidrología | es |
| dc.subject | Modelación hidrológica | es |
| dc.subject | Aprendizaje automático | es |
| dc.subject | Desbalance de clases | es |
| dc.subject | Hydrology | es |
| dc.subject | Hydrological modelling | es |
| dc.subject | Machine learning | es |
| dc.subject | Class imbalance | es |
| dc.title | Addressing class imbalance problems in data-driven rainfall-runoff modelling | es |
| dc.type | Ponencia | es |
| dc.contributor.filiacion | Vilaseca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.contributor.filiacion | Chreties Christian, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.contributor.filiacion | Castro Alberto, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.contributor.filiacion | Gorgoglione Angela, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
| dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
| Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Mecánica de los Fluidos e Ingeniería Ambiental | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | ||
|---|---|---|---|---|---|
| VCCG24.pdf | Versión publicada | 1,59 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons