english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/52038 Cómo citar
Título: Learning microrhythm in uruguayan candombe using transformers
Autor: Mishra, Anmol
Prabhu, Satyajeet
Haki, Behzad
Rocamora, Martín
Tipo: Ponencia
Palabras clave: Musical rhythm, Microtiming, Candombe, Music generation
Fecha de publicación: 2025
Resumen: Musicians rely on nuanced microrhythm, small variations in timing, dynamics, and other aspects, to create an expressive rhythmic feel in music performance. Electronic music production often attempts to replicate these qualities through algorithmic manipulations to achieve similar effects. In this work, we address the generation of microrhythm using a method that learns microtiming and dynamics from onset timing and strength annotations of drum performances. We frame microrhythm learning as a sequence modeling task, leveraging a Transformer-based model. Our focus is on Uruguayan candombe drumming, where we explore its rhythmic patterns at both the beat and rhythmic cycle levels. To evaluate the model’s effectiveness in replicating the original microrhythm, we compare the mean, standard deviation and histogram intersection of timing deviations and dynamics values at each subdivision for the original and the generated data. The model is deployed as a VST enabling artists to incorporate candombe grooves into drum scores. With this work, we aim to bridge the gap between algorithmic rhythm creation and the expressive qualities of live performance, striving to produce music with the authentic grooves of various Latin American genres.
Editorial: The International Computer Music Association (ICMA)
EN: Proceedings of the International Computer Music Conference (ICMC), Boston, USA, 8-14 jun. 2025, pp. 1-5.
Financiadores: Este trabajo fue apoyado por “IA y Música : Cátedra en Inteligencia Artificial y Música” (TSI-100929-2023-1).
Secretaría de Estado de Digitalización e Inteligencia Artificial.
Unión Europea-Next Generation EU, bajo el programa “Cátedras ENIA 2022 para la creación de cátedras universidad-empresa en IA”.
Citación: Mishra, A., Prabhu, S., Haki, B. y otros. Learning microrhythm in uruguayan candombe using transformers [en línea]. EN: Proceedings of the International Computer Music Conference (ICMC), Boston, USA, 8-14 jun. 2025, pp. 1-5.
Cobertura geográfica: Uruguay
Departamento académico: Procesamiento de Señales
Grupo de investigación: Procesamiento de Audio (GPA)
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
MPHR25.pdfCamera-Ready1,14 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons