Learning Microrhythm in Uruguayan Candombe using Transformers
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ABSTRACT

Musicians rely on nuanced microrhythm, small variations
in timing, dynamics, and other aspects, to create an ex-
pressive rhythmic feel in music performance. Electronic
music production often attempts to replicate these qual-
ities through algorithmic manipulations to achieve simi-
lar effects. In this work, we address the generation of
microrhythm using a method that learns microtiming and
dynamics from onset timing and strength annotations of
drum performances. We frame microrhythm learning as a
sequence modeling task, leveraging a Transformer-based
model. Our focus is on Uruguayan candombe drumming,
where we explore its rhythmic patterns at both the beat and
rhythmic cycle levels. To evaluate the model’s effective-
ness in replicating the original microrhythm, we compare
the mean, standard deviation and histogram intersection of
timing deviations and dynamics values at each subdivision
for the original and the generated data. The model is de-
ployed as a VST enabling artists to incorporate candombe
grooves into drum scores. With this work, we aim to bridge
the gap between algorithmic rhythm creation and the ex-
pressive qualities of live performance, striving to produce
music with the authentic grooves of various Latin Ameri-
can genres.

1. INTRODUCTION

Microtiming refers to subtle deviations from strict, grid-
like timing in musical performance, where notes or beats
are slightly ahead of or behind their expected positions.
These minor, often almost imperceptible timing variations,
along with other rhythmic aspects such as the dynamic en-
velope, contribute to the expressive quality of the music,
creating a sense of feel or groove [1].

While microtiming occurs in many musical traditions, it
plays a particularly significant role in genres emphasis-
ing thythm and embodiment, such as jazz, funk, and var-
ious folk traditions [2]. For instance, swing ratios have
been characterized in the context of jazz, where consecu-
tive eighth notes are performed as long-short patterns [3].
Irish fiddle music also displays timing deviations at the
eighth-note level [4], while Viennese Waltz at the quarter-
note level; each third quarter-note in a bar is shorter [5].

Our focus in this work is candombe drumming, which is
a defining element of Uruguayan popular culture [6]. It is
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performed using three drums of varying sizes and pitches -
chico, repique, and piano - each playing a distinct rhythmic
pattern. An additional pattern, shared by all three drums,
is the madera pattern or clave, with functions similar to
the timeline in Afro-Cuban and sub-Saharan African mu-
sic traditions; serving as a means of temporal organization
and synchronization. The candombe rhythm emerges from
the interplay of these patterns, and its metric structure, a
cycle of four beats with sixteen pulses, bears similarities
to other Afro-Atlantic music traditions. The chico drum is
the timekeeper of the ensemble. It maintains a repetitive
pattern throughout the performance, establishing the foun-
dational layer of the rhythm. Some prior works have inves-
tigated the microtiming properties of the rhythmic patterns
in candombe music [7-9].

In this work, we aim to model microrhythm in candombe
drumming. To do that, we use a Transformer-based model
to learn the microtiming and dynamics from onset timing
and strength annotations of real performances. We evalu-
ate the model by comparing the mean, standard deviation
and histogram intersection of the original and the gener-
ated onset data. To sample the learned groove, we export
the model for inference inside a Virtual Studio Technology
(VST) wrapper. Our VST is available here. !

2. METHODS
2.1 Dataset Preparation

The models were trained on the candombe dataset derived
from Rocamora et al. [10]. This corpus has been com-
piled as a part of the Interpersonal Entrainment in Music
Performance (IEMP) Project [11]. It consists of 12 perfor-
mances, 9 trios and 3 quartets. The trios have three chan-
nels corresponding to chico (C), piano (P) and repique (R1)
drums. The quartets have an additional channel for repique
(R2) drum. For modeling all the performances together,
we reduce the quartets to three channels by discarding one
repique (R2) drum.
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Table 1. Input/output sequence representation for 2-bar beats in 4/4 with
16th note resolution for a total of 32 time steps (%), and 3 drum voices (j).

Following [12], we represent our data as three matrices
corresponding to hits (H), velocities (V) and offsets (O).
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This HVO matrix representation is a useful way to repre-
sent expressive percussion performances for training ma-
chine learning models. The matrices have size T time steps
(one step per 16th note) and M instruments per time step.
We quantize the onset annotations to get the hits matrix,
scale the microtiming values between [-0.5, 0.5) for off-
sets, and normalize the onset annotation strengths between
[0, 1] for velocities. Same as [12] and [13], we choose to
learn these sequences over 2 bars, thus getting matrices of
size T=32 and M=3. We obtain a total of 1070 bars (cycles)
of onset data across 12 performances, which then forms the
ground truth for our experiments. A summary of the HVO
representation is provided in Table 1.

2.2 Model Architecture
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Figure 1. Model architecture

We attempt to model the problem of learning velocities
and offsets from hits as a sequence-to-sequence problem.
To be able to learn the microrhythm representation, we
train transformer models that take the hits matrix as input
and output velocity and offset matrices for the hits matri-
ces.

The transformer architecture we use is based on the en-
coder section of the transformer architecture and is de-
picted in Figure 1. The drum patterns are processed over
T=32 time steps, and a transformer encoder encodes the hit
patterns into performance outputs. The encoder uses multi-
head self-attention with 4 heads and a model dimension of
128. The feed forward layer also has a dimension of 128
and the number of encoder blocks is 11. The model jointly
predicts velocities (V), and timing offsets (O). The outputs
at each time step are split into (1) tanh for velocities v; and
(2) tanh for offsets ;. A square error loss is computed at

each time step ¢ for drum channel k as follows:
Lig = (veg — 0 x)* + (006 — 01.1)°

and mean is computed across all time steps and channels
to obtain the final loss. During inference, the output ve-
locities are scaled to [0, 1] and offsets are scaled to [-0.5,
0.5).

We generate train and validation splits for selecting mod-
els during hyperparameter optimization. We finally train
the model on the entire dataset for deployment inside a
VST plugin. The VST plugin takes input drum hits pat-
tern as MIDI and adds groove to it. The humanized MIDI
can be played within the plugin using default sounds, or
dragged out to be used in DAWs.
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Figure 2. VST interface

3. EXPERIMENTS

For evaluation of our model’s learned groove, we leverage
the musicological understanding of rhythmic performance
in candombe drumming. We select one representative per-
formance from the dataset, extract its onset data (i.e. the
hits) and infer the velocities and offsets using our model.
Candombe drumming has repeating rhythmic structures at
two different metric levels: the beat and the rhythmic cy-
cle. The inference of the model is then analysed at these
two temporal scales.

3.1 Distribution of Chico onsets in beat

In candombe, the chico assumes the role of the timekeeper
playing repeating patterns at the level of the beat through-
out the whole performance (see Figure 3) [8]. Thus our
first experiment compares the distributions of chico onsets
at the beat level in the actual and predicted data, to evaluate
if we are able to learn its characteristic microtiming.

In Figure 4, we plot the chico onsets in actual (green)
and predicted (red) data at the level of a beat. The pattern
articulates the four sixteenth-note subdivisions of the beat
(notated as .1, .2, .3 and .4). The means of offset values at
each subdivision are also computed and displayed as a per-
centage of the beat duration, in a manner that represents av-
erage microtiming around that particular subdivision. We
see that the model is able to learn the characteristic timing
deviations of the chico onsets at each subdivision.

Table 2 provides the mean, standard deviation and his-
togram intersection values of the actual and predicted onset



distributions at each subdivision computed across the en-
tire dataset, showing the model is correctly capturing the
microtiming information from the original data.

Accents form a major part of expressing groove. Since
our model also captures velocity distributions, we compare
actual and predicted velocities of chico onsets in the span
of a beat. Figure 5 shows velocity values of chico at each
subdivision of the beat for the actual (green) and predicted
(red) data. The model appears to learn the velocity distri-
bution in the ground truth. However, there is a discrepancy
between the ground truth velocity data and the theoretical
pattern shown in Figure 3, which clearly shows an accent
at the second beat subdivision that is not reflected in the
ground truth data and calls for further investigation.
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Figure 3. Chico pattern of the performance shown in Figure 4 in music
notation (the lower line represents the hand, and the upper line represents
the stick). The pattern is repeated for each of the four beats of the rhyth-
mic cycle.
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Figure 4. Chico actual (top) vs predicted onsets (bottom) for all beats in
one of the performances of the dataset.
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Figure 5. Predicted and actual velocities of chico onsets for all beats of
the same performance of Figure 4.

3.2 Distribution of microtiming in cycle

We focus on the madera pattern whose duration spans over
one rhythmic cycle, as depicted in Figure 7. The pattern is

Sub Div Mean Std Hist Int
Actual Pred. Actual Pred.
1 0.01 0.01 0.02 0.02 0.84
2 0.25 0.26 0.03 0.03 0.94
3 0.48 0.49 0.02 0.02 0.81
4 0.72 0.73 0.02 0.02 0.84

Table 2. Chico actual and predicted mean, standard deviation and his-
togram intersection of offset distribution across beats computed for the
entire dataset.

played by all the drums as an introduction to and prepara-
tion for the rhythm, but once the performance starts it is
only played by the repique drum in between phrases [7].
The IEMP candombe dataset provides annotations for sec-
tions containing the madera pattern. So we consider the
same performance used in Section 3.1 but now we focus
on the cycles in which the repique drum plays the madera
pattern. We infer on the 59 cycles of madera repique hits to
identify whether such cycle level microtiming patterns are
learned by the model. Figure 6 shows the distribution of
repique onsets for the ground truth and the model inference
on these sections. The model can learn the actual micro-
timing of the madera pattern. Interestingly, we observe that
the onsets at the 4th subdivision of the first and fourth beats
(1.4 and 4.4) are clearly ahead of the isochronous grid and
are consistent with the microtiming patterns observed for
the repique drum.

4. DISCUSSION AND CONCLUSION

In this work, we attempted to learn the microrhythm char-
acteristics of Uruguayan candombe drumming. The onset
timing and strength data were represented as hits, velocity,
and offset (HVO) matrices and used to train a transformer
model on 2-bar length sequences. The trained model was
integrated into a VST for artistic use, allowing users to
incorporate microrhythms to quantized drum hit patterns.
We qualitatively evaluate the model at two temporal scales,
beat and rhythm cycle, using the chico drum and the madera
pattern played by the repique drum. The results obtained
are promising, and we plan to conduct listening studies in
future for comprehensive evaluation. We found the mean
and standard deviation values of our model’s learned mi-
crotiming distributions to resemble the original distribu-
tion in the dataset. The model also managed to learn the
velocity distributions at the beat subdivisions.

The model architecture is capable of learning the groove
(offset and velocity) distribution of any given dataset in the
HVO representation, irrespective of music style. In future
work, we plan to extend our model to learn the microtim-
ing profiles of other Latin American music genres, seeking
to contribute to more diverse tools for algorithmic rhythm
creation in electronic music production.

5. ETHICS STATEMENT

Our utmost priority in this study is to honor the cultural
heritage and safeguard the privacy of the communities rep-
resented in the IEMP collection. We acknowledge that
each culture and tradition possesses unique nuances that
cannot be fully captured through computational methods
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Figure 6. Example of madera patterns actual vs predicted onsets
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Figure 7. The two madera patterns played by the repique drum in the
performance of Figure 6 shown in music notation (x symbol for madera
sound). The performance starts with the top pattern and then switches to
the bottom one.

alone and should not be simplified or generalized. Any
tools developed using materials from this corpus are in-
tended solely for academic use, aiming to enhance cultural
diversity in music information research.
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