english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51712 Cómo citar
Título: From discord to harmony : Decomposed consonance-based training for improved audio chord estimation
Autor: Poltronieri, Andrea
Serra, Xavier
Rocamora, Martín
Tipo: Ponencia
Palabras clave: Decomposed consonance-based training, Audio Chord Estimation
Fecha de publicación: 2025
Resumen: Audio Chord Estimation (ACE) holds a pivotal role in music information research, having garnered attention for over two decades due to its relevance for music transcription and analysis. Despite notable advancements, challenges persist in the task, particularly concerning unique characteristics of harmonic content, which have resulted in existing systems' performances reaching a glass ceiling. These challenges include annotator subjectivity, where varying interpretations among annotators lead to inconsistencies, and class imbalance within chord datasets, where certain chord classes are over-represented compared to others, posing difficulties in model training and evaluation. As a first contribution, this paper presents an evaluation of inter-annotator agreement in chord annotations, using metrics that extend beyond traditional binary measures. In addition, we propose a consonance-informed distance metric that reflects the perceptual similarity between harmonic annotations. Our analysis suggests that consonance-based distance metrics more effectively capture musically meaningful agreement between annotations. Expanding on these findings, we introduce a novel ACE conformer-based model that integrates consonance concepts into the model through consonance-based label smoothing. The proposed model also addresses class imbalance by separately estimating root, bass, and all note activations, enabling the reconstruction of chord labels from decomposed outputs.
Editorial: ISMIR
EN: 26th International Society for Music Information Retrieval Conference, ISMIR 2025, Daejeon, Korea, 21-25 sep. 2025, pp. 1-9.
Financiadores: Este trabajo cuenta con el apoyo de IA y Música: Cátedra en Inteligencia Artificial y Música (TSI-100929-2023-1), financiado por la Secretaría de Estado de Digitalización e Inteligencia Artificial, y la Unión Europea-Next Generation EU, bajo el programa Cátedras ENIA 2022 para la creación de cátedras universidad-empresa en IA, e IMPA: Multimodal AI for Audio Processing (PID2023- 152250OB-I00), financiado por el Ministerio de Ciencia, Innovación y Universidades del Gobierno de España, la Agencia Estatal de Investigación (AEI) y cofinanciado por la Unión Europea.
Citación: Poltronieri, A., Serra, X. y Rocamora, M. From discord to harmony : Decomposed consonance-based training for improved audio chord estimation [en línea]. EN: 26th International Society for Music Information Retrieval Conference, ISMIR 2025, Daejeon, Korea, 21-25 sep. 2025, pp. 1-9.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Procesamiento de Audio (GPA)
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PSR25.pdfVersión publicada989,32 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons