Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51712
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Poltronieri, Andrea | - |
dc.contributor.author | Serra, Xavier | - |
dc.contributor.author | Rocamora, Martín | - |
dc.date.accessioned | 2025-09-23T17:58:44Z | - |
dc.date.available | 2025-09-23T17:58:44Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Poltronieri, A., Serra, X. y Rocamora, M. From discord to harmony : Decomposed consonance-based training for improved audio chord estimation [en línea]. EN: 26th International Society for Music Information Retrieval Conference, ISMIR 2025, Daejeon, Korea, 21-25 sep. 2025, pp. 1-9. | es |
dc.identifier.uri | https://ismir2025.ismir.net/ | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/51712 | - |
dc.description.abstract | Audio Chord Estimation (ACE) holds a pivotal role in music information research, having garnered attention for over two decades due to its relevance for music transcription and analysis. Despite notable advancements, challenges persist in the task, particularly concerning unique characteristics of harmonic content, which have resulted in existing systems' performances reaching a glass ceiling. These challenges include annotator subjectivity, where varying interpretations among annotators lead to inconsistencies, and class imbalance within chord datasets, where certain chord classes are over-represented compared to others, posing difficulties in model training and evaluation. As a first contribution, this paper presents an evaluation of inter-annotator agreement in chord annotations, using metrics that extend beyond traditional binary measures. In addition, we propose a consonance-informed distance metric that reflects the perceptual similarity between harmonic annotations. Our analysis suggests that consonance-based distance metrics more effectively capture musically meaningful agreement between annotations. Expanding on these findings, we introduce a novel ACE conformer-based model that integrates consonance concepts into the model through consonance-based label smoothing. The proposed model also addresses class imbalance by separately estimating root, bass, and all note activations, enabling the reconstruction of chord labels from decomposed outputs. | es |
dc.description.sponsorship | Este trabajo cuenta con el apoyo de IA y Música: Cátedra en Inteligencia Artificial y Música (TSI-100929-2023-1), financiado por la Secretaría de Estado de Digitalización e Inteligencia Artificial, y la Unión Europea-Next Generation EU, bajo el programa Cátedras ENIA 2022 para la creación de cátedras universidad-empresa en IA, e IMPA: Multimodal AI for Audio Processing (PID2023- 152250OB-I00), financiado por el Ministerio de Ciencia, Innovación y Universidades del Gobierno de España, la Agencia Estatal de Investigación (AEI) y cofinanciado por la Unión Europea. | es |
dc.format.extent | 9 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | ISMIR | es |
dc.relation.ispartof | 26th International Society for Music Information Retrieval Conference, ISMIR 2025, Daejeon, Korea, 21-25 sep. 2025, pp. 1-9. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Decomposed consonance-based training | es |
dc.subject | Audio Chord Estimation | es |
dc.title | From discord to harmony : Decomposed consonance-based training for improved audio chord estimation | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Poltronieri Andrea, Universitat Pompeu Fabra | - |
dc.contributor.filiacion | Serra Xavier, Universitat Pompeu Fabra | - |
dc.contributor.filiacion | Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
udelar.academic.department | Procesamiento de Señales | es |
udelar.investigation.group | Procesamiento de Audio (GPA) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
PSR25.pdf | Versión publicada | 989,32 kB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons