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ABSTRACT

Audio Chord Estimation (ACE) holds a pivotal role in
music information research, having garnered attention for
over two decades due to its relevance for music transcrip-
tion and analysis. Despite notable advancements, chal-
lenges persist in the task, particularly concerning unique
characteristics of harmonic content, which have resulted in
existing systems’ performances reaching a glass ceiling.
These challenges include annotator subjectivity, where
varying interpretations among annotators lead to inconsis-
tencies, and class imbalance within chord datasets, where
certain chord classes are over-represented compared to oth-
ers, posing difficulties in model training and evaluation.
As a first contribution, this paper presents an evaluation
of inter-annotator agreement in chord annotations, using
metrics that extend beyond traditional binary measures.
In addition, we propose a consonance-informed distance
metric that reflects the perceptual similarity between har-
monic annotations. Our analysis suggests that consonance-
based distance metrics more effectively capture musically
meaningful agreement between annotations. Expanding on
these findings, we introduce a novel ACE conformer-based
model that integrates consonance concepts into the model
through consonance-based label smoothing. The proposed
model also addresses class imbalance by separately esti-
mating root, bass, and all note activations, enabling the re-
construction of chord labels from decomposed outputs.

1. INTRODUCTION

In Western music theory, chords denote simultaneous com-
binations of three or more notes, forming harmonic struc-
tures integral to musical composition and analysis [1–4].
However, manually annotating chords from audio record-
ings is a labour-intensive task requiring music profession-
als’ expertise. Consequently, Audio Chord Estimation
(ACE) emerged as a crucial task in Music Information
Retrieval/Research (MIR) to automate chord transcription
from audio due to its relevance for its numerous applica-
tions in music transcription and analysis.
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The research in ACE has witnessed more than two
decades of exploration, but despite the important advance-
ments achieved [5], performance results have stagnated in
recent years, leading some researchers to suggest that the
task has hit a glass ceiling [6]. These challenges stem from
several significant open problems [5], which are funda-
mentally linked to the complex nature of harmonic content
and its representation within audio signals.

One such challenge is the chord vocabulary imbal-
ance, stemming from the unequal frequency of occurrence
among chord labels. For instance, in ChoCo [7], the most
extensive corpus of chord annotations to date, approxi-
mately 74.9% of the distribution of the 8064 distinct chord
classes is dominated by just major, minor, major seventh,
minor seventh and dominant seventh chord types.

Another critical challenge is inter-annotator agreement,
which arises from the inherent ambiguity in what consti-
tutes a chord from a musical perspective and the subjec-
tive nature of human annotation processes. For example, a
clear distinction between a chord sequence and a melodic
line can be subject to individual interpretation. Moreover,
there is significant variance among annotators regarding
the level of detail in annotating chord sequences [8].

Various studies have investigated inter-annotator agree-
ment in chord annotation, reporting agreement rates for the
root note ranging from 76% [8] to 92% [9], using differ-
ent datasets and numbers of annotators. Such evaluations
typically use binary metrics to compare labels, but penalis-
ing the agreement evaluation equally for every discrepancy
can be inappropriate [10]. Indeed, binary evaluation risks
overlooking harmonic aspects that might be shared among
chord sequences, although annotated differently.

As a preliminary contribution of this paper, we anal-
yse patterns of inter-annotator disagreement in chord an-
notation. Our analysis reveals that when annotators dis-
agree, their chord labels tend to be harmonically related
rather than randomly different. Specifically, we find that
disagreements commonly occur between chords that share
significant harmonic content (c.f. Section 3.1).

Building upon these insights, we propose a method for
incorporating such information into the supervised training
of ACE systems. Hence, we introduce a novel model inte-
grating consonance-based label smoothing [11] (c.f. Sec-
tion 3.2.2). To tackle the class imbalance issue, instead
of mapping audio features to a predetermined vocabulary
of chord labels, we adopt an approach inspired by [12], in
which the chord root, bass, and all note activations are clas-



sified separately. The final predicted chord label is derived
from decoding these three sets of information without ex-
plicitly imposing any vocabulary on it (c.f. Section 3.2.1).

The proposed model leverages the Conformer architec-
ture [13], which has recently been explored in several mu-
sic audio applications [14–16]. We demonstrate that the
proposed model performs better than the state-of-the-art
approaches, especially when evaluated using non-binary
and consonance-based distance metrics (c.f. Section 4).

2. RELATED WORK

Since Fujishima’s early work [17], chord recognition has
followed knowledge-driven approaches [18], typically ex-
tracting chroma [19] or Tonnetz features [20], and classi-
fying them via HMMs, DBNs [19], or CRFs [21].

With the emergence of deep learning, various architec-
tures have been explored for the task, including Convolu-
tional Neural Networks (CNNs) [12, 21], Recurrent archi-
tectures (RNN) [22], Convolutional Recurrent Neural Net-
works (CRNNs) [23], and Transformers [24]. While deep-
learning approaches have surpassed traditional knowledge-
driven ones, several challenges must be tackled. Most
of the proposed approaches to addressing the chord class
imbalance challenge can be divided into two categories:
chord simplification and chord decomposition. The for-
mer reduces the size of the chord vocabulary by convert-
ing complex chord labels into simpler representations. No-
tably, the vast majority of studies have adopted restricted
vocabularies of approximately 25 symbols, encompassing
major-minor chords [17, 18]. Chord decomposition strate-
gies focus on predicting the chord constituting components
separately, and then map them to templates to predict the
final chord [12,23,25]. Some additional approaches do not
fall into these two categories, like addressing the unequal
distribution of chords through a balanced learning pro-
cess [26], or using a curriculum learning training scheme
to begin with simple chord qualities and then move to more
complex and less common ones [27].

The inter-annotator agreement in chord annotation con-
tinues to pose a significant challenge. Despite existing
diagnoses and quantification of this phenomenon in the
literature [8, 9], definitive solutions have yet to emerge.
Clercq et al. [9] observe an inter-annotator agreement rate
of 94% for the root note between two different annota-
tions of the top 20 tracks from Rolling Stone magazine’s
list of the 500 Greatest Songs of All Time. In contrast,
Koops et al. [8] report an inter-annotator agreement rate
of 76% for the root note on four different annotations of
a 50-song subset of the Billboard dataset [28]. To address
annotation subjectivity, Koops et al. [8, 29] propose a per-
sonalised chord estimation framework that adapts labels to
individual annotator vocabularies. Their method computes
Shared Harmonic Interval Profiles (SHIPs) from multiple
reference annotations aligned with CQT frames and trains
a neural network to predict user-specific chord labels, of-
fering an alternative to fixed-vocabulary systems. While
this approach offers valuable insights into annotation vari-
ability, it addresses personalization rather than resolving

fundamental inter-annotator disagreement. In contrast, our
proposed method develops generalized harmonic represen-
tations grounded in music theory principles, thereby elim-
inating dependence on predefined chord vocabularies.

Moreover, our method applies Label Smoothing (LS),
a technique employed to enhance the generalisation and
learning speed of multi-class neural networks. Originally
proposed in [30], LS redistributes a portion of the probabil-
ity mass from the observed class to other classes, thereby
softening the distribution and generating what is referred
to as soft targets. This regularisation method has found
widespread application in various state-of-the-art mod-
els across domains such as image classification, language
translation, and speech recognition. It has also been tested
for music classification tasks [31], improving performance
and reducing overfitting in small network training.

While LS primarily serves as a regularisation technique,
numerous studies have delved into its potential for encod-
ing meaningful relationships among different categories.
For instance, in [32], authors propose an impactful method
for generating more reliable soft labels that explicitly con-
sider the relationships among various categories. Simi-
larly, in [33], a novel approach known as label relaxation
is introduced, which involves replacing a degenerate prob-
ability distribution associated with an observed class label,
not by a single smoothed distribution but rather by a larger
set of candidate distributions.

We integrate label smoothing into a model based on the
conformer architecture [13], which has recently emerged
in Automatic Speech Recognition (ASR) as an effective
way of modelling global and local audio dependencies by
leveraging a combination of CNNs and Transformer archi-
tectures. It has showcased remarkable success across var-
ious tasks not only in speech [34] but also in music [15],
including melodic transcription [14], representation learn-
ing [35], and music audio enhancement [36]. It also proved
to be suitable for harmonic analysis, as it has been used for
audio–chord alignment [16] and more recently adapted for
chord estimation [37], where it is combined with the large-
vocabulary decoding scheme proposed in [23].

3. METHODS

We present a four-part investigation into chord estimation:

(i) we conduct a comprehensive analysis of inter-
annotator agreement across multiple chord similar-
ity metrics, assessing how non-binary metrics mea-
sure inter-annotator agreement scores;

(ii) we introduce a new perceptually-informed distance
metrics and we demonstrate how it can improve
agreement between annotators;

(iii) we introduce a consonance-based label smoothing
that leverages consonance to improve chord recog-
nition;

(iv) we present a novel chord label encoding/decoding
methodology, inspired by [12].



3.1 Analysis of Inter-Annotator Agreement

As outlined in Section 1, standard metrics employed to
evaluate chord estimation systems have traditionally relied
on binary comparison approaches [5]. The most funda-
mental of these is the binary distance Bdist(C1, C2), which
is defined as 1 if C1 = C2, and 0 otherwise.

When evaluating chord annotations or estimation algo-
rithms, this binary comparison is typically weighted by
the duration of each chord segment to compute the Chord
Symbol Recall (CSR) [38]:

CSR =
| Sa ∩ Se |

| Sa |
. (1)

where Se represents the set of time segments where the
estimated chords match the reference annotations, and Sa

represents the total duration of annotated segments.
In addition to overall binary agreement, several granu-

lar evaluation metrics have been introduced, each captur-
ing different levels of harmonic detail. The Root metric
compares only the root note, ignoring chord quality and
extensions. Thirds extends this by incorporating major and
minor third intervals. Triads evaluate the full triadic struc-
ture—including major, minor, augmented, diminished, and
suspended chords, up to the fifth scale degree. Tetrads
consider closed-voicing chords with extended tones (e.g.,
9ths, 11ths, 13ths) collapsed into a single octave. The
Sevenths metric restricts evaluation to a predefined set of
common seventh chord types. Finally, the MIREX met-
ric deems an estimate correct if it shares at least three pitch
classes with the reference chord, regardless of root or qual-
ity. These metrics can optionally account for chord inver-
sions by requiring the bass note to match as well. All
are implemented in the mir_eval library [39], which
is the de facto standard for chord estimation evaluation.
These metrics have been consistently used in literature to
assess inter-annotator agreement in chord datasets, report-
ing agreement rates for the root note ranging from 76% [8]
to 92% [9].

However, to overcome the inherent limitations of binary
evaluation metrics, recent research has introduced alter-
native measures. McLeod et al. [10] proposed three new
metrics that more accurately represent musical relation-
ships among chords: Spectral Pitch Similarity, Tone-by-
Tone Distance, and Mechanical Distance.

Spectral Pitch Similarity, which assesses perceived
pitch content based on psychoacoustic principles, lies be-
yond the scope of this study. On the other hand, Tone-
by-Tone Distance (TbT) treats chords as pitch-class sets,
categorising pitches as either tonal or neutral. This metric
quantifies chord similarity by measuring the proportion of
shared pitch classes, resulting in a distance value reflect-
ing their pitch-content similarity. In contrast, Mechanical
Distance provides a more granular evaluation by approxi-
mating the physical distance between chord labels as they
would be played on an instrument. It extends Tone-by-
Tone Distance by quantifying not only the proportion of
incorrect pitches but also the magnitude of each deviation
from the target chord, by default measured in semitones.

While this approach introduces a more musically
grounded notion of distance, the original formulation of
Mechanical Distance still treats all semitone deviations as
perceptually equivalent. This simplification overlooks the
fact that, in Western tonal harmony, the perceptual im-
pact of an interval depends not only on its size but also
on its harmonic function. To address this limitation, we
propose an extension that incorporates consonance-based
weighting into the Mechanical Distance. Specifically, we
introduce the Mechanical-Consonance metric, which inte-
grates the perceptual consonance vector presented in [40],
grounded in empirical studies of Western tonal harmony.

The consonance vector is defined as:

vt = [0, 7, 5, 1, 1, 2, 3, 1, 2, 2, 4, 6] (2)

where each position corresponds to an interval in semi-
tones, assigning lower values to more consonant intervals.
For instance, perfect fifths and thirds (P5, m3, M3) receive
the lowest score (1), indicating high consonance, while dis-
sonant intervals such as major sevenths, minor seconds,
and tritones are assigned higher values (up to 7). Intervals
of intermediate consonance, such as fourths and sixths, are
assigned moderate values. By weighting semitone devia-
tions using this vector, the Mechanical-Consonance metric
adjusts the contribution of each error based on its percep-
tual salience.

As a first contribution of this paper, we assess inter-
annotator agreement across various chord granularity lev-
els (e.g., root, thirds, triads) by comparing standard
mir_eval metrics with Tone-by-Tone Distance and Me-
chanical Distance. To align these non-binary metrics with
the granularity levels typically employed in ACE evalu-

CASD Dataset
Metric mir_eval↑ TbT↑ Mech↓ Mech-Cons↓

Root 0.757 0.773 0.817 0.604
Thirds 0.741 0.773 0.896 0.716
Triads 0.710 0.796 1.549 1.663
MajMin 0.734 0.803 1.465 1.577
Tetrads 0.572 0.786 1.859 1.803
Sevenths 0.592 0.794 1.771 1.715
MIREX 0.744 0.786 1.859 1.803

Random Dataset
Metric mir_eval↑ TbT↑ Mech↓ Mech-Cons↓

Root 0.145 0.158 2.914 2.336
Thirds 0.140 0.158 2.914 2.336
Triads 0.121 0.253 5.536 5.861
MajMin 0.124 0.248 5.530 5.958
Tetrads 0.121 0.253 5.536 5.861
Sevenths 0.124 0.248 5.530 5.961
MIREX 0.121 0.253 5.536 5.861

Table 1. Inter-Annotator Agreement Scores for Chord An-
notations. TbT = Tone-by-Tone distance, Mech = Mechan-
ical distance, Mech-Cons = Mechanical with Consonance
distance.



Figure 1. Overview of the Conformer model architecture, which comprises the preprocessing stage, the conformer-based
model, and the symbolic chord decoder.

ations, we apply two heuristics: (i) restricting compar-
isons to the pitch ranges considered by the respective
mir_eval metrics (e.g., pitches up to the fifth of the
chord for the MajMin metric); and (ii) limiting compar-
isons only to chords included in the mir_eval metric
evaluation (e.g., diminished and seventh chords are ex-
cluded from the MajMin metric).

We conduct this analysis on the Chordify Annotator
Subjectivity Dataset (CASD) [41], which represents the
largest available dataset for assessing chord annotation
agreement and was previously used for similar studies [8].

Moreover, to establish baseline performance and assess
metric reliability, we conduct parallel experiments on a
synthetically generated dataset replicating CASD’s struc-
ture (50 tracks with 4 annotations each), but populated with
randomly generated chord sequences that preserve both its
chord vocabulary and sequence-length distributions.

Table 1 reports the results for both the CASD and syn-
thetic datasets, highlighting the performance and reliabil-
ity of each metric across different evaluation settings. To
aid interpretation, we first clarify the nature and scaling of
each metric under comparison.

The mir_eval metrics are formulated as similarity
measures, returning values in the range [0, 1], where 1 indi-
cates perfect agreement and 0 indicates complete disagree-
ment. In contrast, Tone-by-Tone Distance is defined as a
distance metric in [0, 1], with 0 indicating identical pitch-
class content and 1 indicating no overlap; we convert it to
a similarity score by computing 1−TbT. Mechanical Dis-
tance returns an unbounded distance value influenced by
the number of notes in the chords, the sequence length, and
the underlying pitch distance function. Due to these vari-
able factors, we report Mechanical Distance in its original
form without normalisation, as any fixed rescaling would
obscure meaningful differences.

The results show a clear separation between the CASD
and random datasets, confirming that all metrics are sen-
sitive to musically meaningful agreement. TbT similar-
ity scores are remarkably stable across all chord granular-
ity levels, including more complex ones such as Sevenths
and Tetrads. In the random dataset, TbT returns consis-
tently higher values than mir_eval, and scores increase
progressively as more notes are considered in the evalu-
ation (e.g., from Root to Sevenths). This trend indicates
that TbT is more permissive than discrete match-based
approaches and more sensitive to coincidental pitch-class
overlap when more components are involved.

Mechanical Distance exhibits lower agreement for sim-
pler structures (e.g., Root and Thirds), closely mirroring
the mir_eval pattern. This is also reflected in the ran-
dom dataset, where increasing the chord complexity leads
to proportionally larger distances.

Mechanical-Consonance generally produces lower
scores for the CASD dataset and higher scores for the
random dataset compared to its unweighted counterpart.
Notably, the mean difference between CASD and random
results is 3.326 for Mechanical Distance and 3.471 for
Mechanical-Consonance. This larger separation supports
the idea that inter-annotator disagreements are not random
but often occur between harmonically related chords. The
consonance-weighted formulation reinforces this insight
by penalising perceptually dissonant deviations more heav-
ily, further distinguishing musically plausible disagree-
ments from unstructured noise.

3.2 Proposed Model

As a second contribution, this paper presents a novel ACE
model, illustrated in Figure 1, which leverages the Con-
former architecture [13]. As a first step, the audio is first
resampled to a sampling rate of 22050 Hz, and a hop size
of 2048 is applied. Then, the Constant-Q Transform (CQT)
features are calculated on 6 octaves starting from C1, with
24 bins per octave, resulting in a total of 144 bins. The
CQT features are fed to a conformer encoder [13] before
being passed to the decoder layers.

3.2.1 Chord Decomposition and Decoding

Label encoding follows a similar approach as [12]. Root
and bass notes are encoded as a 13-dimensional one-hot
vector, where the first 12 positions represent the semitones
from C to B, and the last one indicates silence (denoted
as N ). Chord tones are encoded using a 12-dimensional
multi-hot vector, where each dimension indicates the pres-
ence (1) or absence (0) of a pitch class in the chord.

The output of the Conformer layers is first passed
through a fully connected head to predict chord tones.
These chord predictions then serve as conditioning infor-
mation for two additional components: bass and root pre-
diction. Each of these components employs a feature fu-
sion mechanism that concatenates the original Conformer
features with the chord logits, creating an enriched rep-
resentation that captures both the acoustic context and the
predicted harmonic content. This hierarchical approach re-



Figure 2. Example of chord label decoding for a D:maj7/3 chord using the decomposed decoder, inspired by [12].

flects the musical intuition that bass and root notes are con-
textually dependent on the overall harmonic content, rather
than treating all three components as independent predic-
tion tasks. To train the model, we use a composite loss that
aligns with this encoding scheme. Cross-entropy loss is ap-
plied to root and bass predictions, and binary cross-entropy
loss is used for chord tone predictions. Additionally, we in-
troduce a regularisation term that penalises discrepancies
between the predicted and actual number of active pitch
classes.

The total loss is defined as:

L = λroot Lroot
CE + λbass Lbass

CE + λchord Lchord
BCE

+ λcard ∥ĉ− c∥1
(3)

where c and ĉ are the number of active notes in the ground
truth and those predicted above a threshold, respectively.

Differently from [12], where the outputs of the bass,
root, and pitch activation predictions are combined and
passed through a final linear layer to predict chord labels,
we directly use these three components to reconstruct the
final chord label. The novelty of this approach lies in the
fact that, unlike vocabulary-constrained decoding strate-
gies such as [23], our method does not require a predefined
chord vocabulary.

Chord labels are reconstructed from the predicted prob-
abilities in a modular decoding process. First, the root note
is identified by selecting the pitch class with the highest
predicted probability, which is then mapped to its sym-
bolic representation. For the chord tones, a fixed threshold
(default: 0.5) is applied to the predicted pitch activations;
only pitches exceeding this threshold are retained. These
pitch classes are then converted into intervals relative to
the predicted root. An analogous procedure is applied to
the bass prediction, allowing the full reconstruction of the
chord structure, as illustrated in Figure 2. Finally, the de-
coded chord is passed to the harte_library 1 , which
implements utilities for converting the predicted chord la-
bel into the respective shorthand notation.

3.2.2 Consonance-based Smoothing

We introduce a novel label smoothing technique that lever-
ages music-perceptual knowledge by incorporating conso-
nance relationships between pitch classes. Unlike conven-
tional label smoothing that uniformly distributes probabil-
ity mass across incorrect classes, our approach allocates
probability according to the consonance relationship be-
tween pitch classes.

1 https://github.com/andreamust/harte-library

Let c = [c0, c1, . . . , c11] ∈ R12 be a consonance vector
where each element ci quantifies the dissonance level of
the interval i semitones above the reference pitch. Lower
values of ci indicate more consonant intervals (e.g., perfect
fifth, major third). We transform this vector into a similar-
ity measure s ∈ R12 as follows:

s = 1− c

max(c)
(4)

This ensures that more consonant intervals receive
higher similarity scores, with perfect consonance (unison)
having a similarity of 1. For a given target pitch class
t ∈ {0, 1, . . . , 11} and smoothing factor α ∈ [0, 1], we
define the smoothed target distribution q ∈ R12 as:

qi =

{
1− α if i = t

α · s(i−t) mod 12 if i ̸= t
(5)

The distribution is then normalised to ensure
∑11

i=0 qi = 1:

q =
q∑11
i=0 qi

(6)

This formulation creates a probability distribution
where the target class t receives the highest probability
(1 − α), while the remaining probability mass α is dis-
tributed among other pitch classes proportionally to their
consonance relationship with the target. For example,
when the true class is C (0), pitch classes G (7) and F (5)
will receive higher probability than more dissonant inter-
vals like C# (1) or B (11), reflecting their stronger har-
monic relationships.

4. EVALUATION

In this section, compare the performance of the proposed
ACE model with a state-of-the-art method [24], using stan-
dard mir_eval metrics, Tone-by-Tone (TbT) similarity,
and Mechanical distances. Additionally, we evaluate the
effectiveness of the proposed chord decoder by bench-
marking it against a conventional frame-wise classifica-
tion approach, focusing on its ability to accurately capture
chord inversions using the inverted mir_eval metrics.

All chord annotations were sourced from ChoCo [7],
which provides standardized labels in Harte syntax [42].
Specifically, we use annotations from the Isophonics
dataset [43] and the McGill Billboard corpus [44] for train-
ing and validation, while the RWC Pop [45] and USPop
datasets [23] serve as test sets. This setup enables evalua-
tion of both model performance and generalization across
diverse chord vocabularies.



Model Vocab Smooth Root↑ MajMin↑ Thirds↑ Triads↑ Tetrads↑ 7th↑ MIREX↑ TbT↑ Mech↓ MechCons↓

Ours 170 - 81.4 77.5 78.1 72.3 59.6 64.7 79.4 77.9 1.55 1.35
Ours Decom. - 83.4 77.2 79.7 72.2 59.2 64.6 79.3 80.5 1.57 1.37
Ours Decom. Cons. 84.0 77.8 80.3 72.7 60.8 66.0 79.8 81.7 1.44 1.30

BTC 170 - 81.6 77.3 78.4 72.1 60.0 65.7 79.0 78.4 1.60 1.40
BTC Decom. - 82.9 76.0 79.2 70.9 57.2 62.4 77.4 80.4 1.52 1.35
BTC Decom. Cons. 82.8 76.1 79.3 70.9 59.5 64.7 79.0 80.7 1.49 1.32

Table 2. Performance comparison across different model variants using both standard mir_eval metrics and non-binary
metrics. Results are reported for our conformer-based model with and without the decomposition decoder and consonance-
based label smoothing. Additionally, we compare these settings with the BTC model [24].

To increase data density while preserving local har-
monic continuity, each track is segmented into 20-second
excerpts with 50% overlap. We employ data augmenta-
tion by transposing both audio and targets from −5 to +6
semitones. During training, we use the AdamW optimiser
and cosine annealing learning rate scheduler to dynami-
cally adjust the learning rate during training cycles. Addi-
tionally, we adopted mixed precision training [46] to accel-
erate training. To prevent overfitting, we implement early
stopping, terminating training when performance on a vali-
dation set ceased to improve after 10 epochs. The code and
all hyper-parameters used in the experiments are available
on the GitHub repository of the project 2 .

Metric BTC Ours Ours Ours

Vocab. 170 170 Decom. Decom. Cons.

MajMin Inv.↑ 71.5 72.4 75.6 75.6
Thirds Inv.↑ 72.6 72.9 77.2 77.9
Triads Inv.↑ 67.2 67.6 70.2 70.8
Tetrads Inv.↑ 56.2 55.7 57.7 59.4
Sevenths Inv.↑ 60.8 60.0 62.9 64.4

Table 3. Performance comparison on inverted chords be-
tween traditional architectures and the proposed decom-
posed model, evaluated using mir_eval metrics.

4.1 Evaluation of the ACE Model

We evaluate our model using TbT similarity, Mechani-
cal Distance, and its consonance-weighted variant, as in-
troduced in Section 3.1, alongside standard binary met-
rics from mir_eval [39]. For comparison, we adopt
the BTC model [24], a state-of-the-art baseline for audio
chord estimation. We reimplemented and retrained the
BTC model using the hyper-parameter settings specified
in the original paper, enabling a direct evaluation of our
proposed decomposition-based decoder and the impact of
consonance-informed label smoothing. The experimental
results are summarized in Table 2.

As noted by [23], differences among models are often
marginal when evaluated with standard metrics. This holds
true in our comparison: both models yield similar results
on the standard classification task over a 170-class chord
vocabulary. However, our proposed decomposition-based

2 https://github.com/andreamust/consonance-ACE

decoder consistently outperforms the standard frame-wise
classification architecture across several metrics, with the
advantage of not relying on a fixed chord vocabulary. No-
tably, we observe the greatest improvement in Root and
Thirds metrics. Additionally, the use of non-binary met-
rics further highlights the benefits of the proposed decoder.
As shown in Table 3, inverted metrics also improve when
using the proposed decomposed decoder. This improve-
ment stems from the fact that the proposed chord decoding
scheme explicitly predicts the bass note, enabling accurate
inversion prediction–a capability that standard chord clas-
sification approaches inherently lack. The same trend is
confirmed when applying the decomposed decoder to the
BTC model, which yields performance increases across
several metrics, especially the non-binary ones.

When integrating the consonance-weighted loss on root
and bass predictions within the proposed decoding archi-
tecture, performance slight improvement on all metrics.
Notably, improvements are observed also on non-binary
metrics and on inverted chords. The trend is also con-
firmed when applying consonance smoothing to the BTC
model with the decomposed decoder. Overall, evaluation
results suggest that both the proposed decoder and the con-
sonance smoothing improve accuracy in most metrics, and
led to predictions more consonant to the target.

5. CONCLUSIONS

In this paper, we presented a novel model for Audio Chord
Estimation based on the conformer architecture, enhanced
with a consonance-informed label smoothing strategy and
a decomposition-based decoding scheme. The motiva-
tion for incorporating perceptual smoothing emerged from
our inter-annotator agreement analysis, which employed
non-binary distance metrics and revealed that annotation
discrepancies often involve harmonically related chords.
Building on these insights, we introduced a learning strat-
egy that integrates consonance-weighted targets into the
training process.

Experimental results show that the proposed model
achieves strong performance across both standard and non-
binary evaluation metrics, with notable gains in capturing
fine-grained harmonic relationships. Additionally, the pro-
posed decomposition decoder not only enables chord pre-
diction without relying on a fixed chord vocabulary, but
also contributes to consistent performance improvements.
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