english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/5169 How to cite
Title: Recovering historical climate records using artificial neural networks in GPU
Authors: Balarini, Juan Pablo
Nesmachnow, Sergio
Type: Reporte técnico
Keywords: Artificial neural networks, Image processing, Climate records, GPU
Issue Date: 2014
Abstract: This article presents a parallel implementation of Artificial Neural Networks over Graphic Processing Units, and its application for recovering his-torical climate records from the Digi-Clima project. Several strategies are intro-duced to handle large volumes of historical pluviometer records, and the paral-lel deployment is described. The experimental evaluation demonstrates that the proposed approach is useful for recovering the climate information, achieving classification rates up to 76% for a set of real images from the Digi-Clima pro-ject. The parallel algorithm allows reducing the execution times, with an accel-eration factor of up to 2.15×.
Publisher: UR.FI-INCO
Series or collection: Reportes Técnicos 14-09
ISSN: 07976410
Citation: BALARINI, J., NESMACHNOW, S. "Recovering historical climate records using artificial neural networks in GPU". Montevideo : UR.FI-INCO, 2014. Reportes Técnicos 14-09.
License: Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
Appears in Collections:Reportes Técnicos - Instituto de Computación

Files in This Item:
File Description SizeFormat  
TR1409.pdf458 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons