english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51377 Cómo citar
Título: User association in wireless networks with distributed GNN-based reinforcement learning
Autor: Randall, Martín
Paternain, Santiago
Casas, Pedro
Larroca, Federico
Belzarena, Pablo
Tipo: Ponencia
Palabras clave: User association, Mobile networks, Reinforcement learning, Graph neural networks, Wireless networks, Telecommunication traffic, Throughput, Performance metrics, Load management, Energy efficiency, Security, Resource management
Fecha de publicación: 2025
Resumen: User association is crucial for optimizing the performance and utility of wireless networks, enhancing key aspects such as load balancing, spectrum efficiency, energy efficiency, and overall network performance. In this paper we tackle the user association challenge in wireless networks, particularly in resource-constrained connectivity scenarios. Our proposed approach, GROWTh (Graph Representation of Wireless systems Throughput fair), introduces a graph-based reinforcement learning framework that optimizes resource utilization through a fully decentralized algorithm. We validate GROWTh across diverse scenarios, including a 5 G deployment in densely populated areas characterized by high user density and traffic load, where it demonstrates significant improvements in various performance metrics. Notably, GROWTh achieves a substantial increase in system utility compared to traditional methods while simultaneously reducing user rejection rates. These findings highlight the effectiveness of GROWTh in managing user association in high-density environments and underscore its potential for real-world deployment.
EN: 2025 12th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 18-20 jun. 2025, pp. 352-360.
Financiadores: Austrian FFG AI4SIMPROD Project-AI-Assited Simulation y Digital Twining for Efficient Industrial Production- Project 909824.
Citación: Randall, M., Paternain, S., Casas, P. y otros. User association in wireless networks with distributed GNN-based reinforcement learning [en línea]. EN: 2025 12th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 18-20 jun. 2025, pp. 352-360. DOI: 10.1109/NTMS65597.2025.11076766.
Departamento académico: Telecomunicaciones
Grupo de investigación: Análisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RPCLB25.pdfCamera-Ready1,35 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons