Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51377
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Randall, Martín | - |
dc.contributor.author | Paternain, Santiago | - |
dc.contributor.author | Casas, Pedro | - |
dc.contributor.author | Larroca, Federico | - |
dc.contributor.author | Belzarena, Pablo | - |
dc.date.accessioned | 2025-09-02T16:35:03Z | - |
dc.date.available | 2025-09-02T16:35:03Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Randall, M., Paternain, S., Casas, P. y otros. User association in wireless networks with distributed GNN-based reinforcement learning [en línea]. EN: 2025 12th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 18-20 jun. 2025, pp. 352-360. DOI: 10.1109/NTMS65597.2025.11076766. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/51377 | - |
dc.description.abstract | User association is crucial for optimizing the performance and utility of wireless networks, enhancing key aspects such as load balancing, spectrum efficiency, energy efficiency, and overall network performance. In this paper we tackle the user association challenge in wireless networks, particularly in resource-constrained connectivity scenarios. Our proposed approach, GROWTh (Graph Representation of Wireless systems Throughput fair), introduces a graph-based reinforcement learning framework that optimizes resource utilization through a fully decentralized algorithm. We validate GROWTh across diverse scenarios, including a 5 G deployment in densely populated areas characterized by high user density and traffic load, where it demonstrates significant improvements in various performance metrics. Notably, GROWTh achieves a substantial increase in system utility compared to traditional methods while simultaneously reducing user rejection rates. These findings highlight the effectiveness of GROWTh in managing user association in high-density environments and underscore its potential for real-world deployment. | es |
dc.description.sponsorship | Austrian FFG AI4SIMPROD Project-AI-Assited Simulation y Digital Twining for Efficient Industrial Production- Project 909824. | es |
dc.format.extent | 9 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.relation.ispartof | 2025 12th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 18-20 jun. 2025, pp. 352-360. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | User association | es |
dc.subject | Mobile networks | es |
dc.subject | Reinforcement learning | es |
dc.subject | Graph neural networks | es |
dc.subject | Wireless networks | es |
dc.subject | Telecommunication traffic | es |
dc.subject | Throughput | es |
dc.subject | Performance metrics | es |
dc.subject | Load management | es |
dc.subject | Energy efficiency | es |
dc.subject | Security | es |
dc.subject | Resource management | es |
dc.title | User association in wireless networks with distributed GNN-based reinforcement learning | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Randall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Paternain Santiago, Rensselaer Polytechnic Institute, NY, USA | - |
dc.contributor.filiacion | Casas Pedro, Austrian Institute of Technology, Vienna, Austria | - |
dc.contributor.filiacion | Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución (CC - By 4.0) | es |
udelar.academic.department | Telecomunicaciones | es |
udelar.investigation.group | Análisis de Redes, Tráficos y Estadísticas de Servicios (ARTES) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
RPCLB25.pdf | Camera-Ready | 1,35 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons