english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/51377 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRandall, Martín-
dc.contributor.authorPaternain, Santiago-
dc.contributor.authorCasas, Pedro-
dc.contributor.authorLarroca, Federico-
dc.contributor.authorBelzarena, Pablo-
dc.date.accessioned2025-09-02T16:35:03Z-
dc.date.available2025-09-02T16:35:03Z-
dc.date.issued2025-
dc.identifier.citationRandall, M., Paternain, S., Casas, P. y otros. User association in wireless networks with distributed GNN-based reinforcement learning [en línea]. EN: 2025 12th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 18-20 jun. 2025, pp. 352-360. DOI: 10.1109/NTMS65597.2025.11076766.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/51377-
dc.description.abstractUser association is crucial for optimizing the performance and utility of wireless networks, enhancing key aspects such as load balancing, spectrum efficiency, energy efficiency, and overall network performance. In this paper we tackle the user association challenge in wireless networks, particularly in resource-constrained connectivity scenarios. Our proposed approach, GROWTh (Graph Representation of Wireless systems Throughput fair), introduces a graph-based reinforcement learning framework that optimizes resource utilization through a fully decentralized algorithm. We validate GROWTh across diverse scenarios, including a 5 G deployment in densely populated areas characterized by high user density and traffic load, where it demonstrates significant improvements in various performance metrics. Notably, GROWTh achieves a substantial increase in system utility compared to traditional methods while simultaneously reducing user rejection rates. These findings highlight the effectiveness of GROWTh in managing user association in high-density environments and underscore its potential for real-world deployment.es
dc.description.sponsorshipAustrian FFG AI4SIMPROD Project-AI-Assited Simulation y Digital Twining for Efficient Industrial Production- Project 909824.es
dc.format.extent9 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartof2025 12th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 18-20 jun. 2025, pp. 352-360.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectUser associationes
dc.subjectMobile networkses
dc.subjectReinforcement learninges
dc.subjectGraph neural networkses
dc.subjectWireless networkses
dc.subjectTelecommunication traffices
dc.subjectThroughputes
dc.subjectPerformance metricses
dc.subjectLoad managementes
dc.subjectEnergy efficiencyes
dc.subjectSecurityes
dc.subjectResource managementes
dc.titleUser association in wireless networks with distributed GNN-based reinforcement learninges
dc.typePonenciaes
dc.contributor.filiacionRandall Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionPaternain Santiago, Rensselaer Polytechnic Institute, NY, USA-
dc.contributor.filiacionCasas Pedro, Austrian Institute of Technology, Vienna, Austria-
dc.contributor.filiacionLarroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionBelzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
udelar.academic.departmentTelecomunicacioneses
udelar.investigation.groupAnálisis de Redes, Tráficos y Estadísticas de Servicios (ARTES)es
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
RPCLB25.pdfCamera-Ready1,35 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons