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Abstract—User association is crucial for optimizing the
performance and utility of wireless networks, enhancing
key aspects such as load balancing, spectrum efficiency,
energy efficiency, and overall network performance. In
this paper we tackle the user association challenge in
wireless networks, particularly in resource-constrained
connectivity scenarios. Qur proposed approach, GROWTh
(Graph Representation of Wireless systems Throughput
fair), introduces a graph-based reinforcement learning
framework that optimizes resource utilization through
a fully decentralized algorithm. We validate GROWTh
across diverse scenarios, including a 5G deployment in
densely populated areas characterized by high user density
and traffic load, where it demonstrates significant improve-
ments in various performance metrics. Notably, GROWTh
achieves a substantial increase in system utility compared
to traditional methods while simultaneously reducing user
rejection rates. These findings highlight the effectiveness
of GROWTh in managing user association in high-density
environments and underscore its potential for real-world
deployment.

Index Terms—User Association; Mobile Networks; Re-
inforcement Learning; Graph Neural Networks

I. INTRODUCTION

As wireless networks — encompassing FANETS, satel-
lite constellations, 5G, and beyond — evolve at a rapid
pace, the challenge of user association with the infras-
tructure has grown increasingly complex. The diverse
range of services, high traffic demand, user mobility, and
the infrastructure topology have rendered traditional user
association techniques ineffective in many scenarios.
Even in the case of 5G, the conventional techniques
fall short, particularly during high-traffic events, un-
derscoring the pressing need for advanced solutions.
Performance degradation ranges from low throughput
[1] to even occasional outages [2]. Not surprisingly,
user density is a key aspect of service downgrade [3].
User association has been a key focus since the early
days of wireless systems, traditionally managed through

simple policies like maximizing the signal-to-noise ratio,
yet only recently have the limitations of classic over-
provisioning for infrastructure deployment become evi-
dent.

The user association problem can be formulated as
an optimization problem: to which network provider’s
node (e.g., UAYV, satellite, base station) a user should be
connected to maximize a global system utility function,
generally throughput-related. Finding the optimal policy
is typically intractable, as the assignment problem is NP-
hard and the number of possible states becomes too large
to explore exhaustively. However, by combining state-
of-the-art artificial intelligence with simple and robust
system models, there is great potential for advancing user
association techniques.

User association challenges can be framed as a se-
quential decision-making problem, making deep rein-
forcement learning an ideal approach for modeling
wireless systems. To enhance convergence, we approx-
imate the value function using a Graph Neural Net-
work (GNN). By leveraging the system’s underlying
graph structure, this novel machine-learning technique
enables a decentralized algorithm that not only scales
but also generalizes to unseen scenarios, underscoring
its adaptability. We address user association with a focus
on the distributed nature of our approach. Our main
contributions are as follows:

User modeling: we consider a non-traditional ap-
proach to users’ modeling as they come and leave
the system, being either served or not (and satisfied
or unsatisfied). The departure of users is particularly
challenging, as a superficial modeling could violate the
memoryless condition (the markovian property in which
the current state is enough and resumes past history). To
address this issue, we propose a system’s state represen-
tation respecting the Markovian properties, a key aspect
enabling the application of reinforcement learning with
guarantees.



Distributed decision making: Several important sce-
narios, either in next generation wireless systems or in
FANETSs deployments, call for a fully-distributed user
association algorithm. This is precisely our goal in this
work, where we leverage some of GNN’s properties to
design a fair and user-centric algorithm, which performs
significantly better than other distributed baselines.

Validation results and code reproducibility: we
share both our code and our experiments for the sake of
reproducibility and as a contribution to the field. Code
is available at https://gitlab.fing.edu.uy/mrandall/growth.

The rest of the paper is organized as follows. Sec. 11
presents an overview on related work. In Sec. III we
introduce the problem statement, as well as the system
modeling and learning formulation proposed. The dis-
tributed algorithm is presented in Sec. IV. In Sec. V
we summarize implementation details and benchmark
results in different scenarios. Concluding remarks and
future lines of work are discussed in Sec. VL.

II. RELATED WORK

User association (UA) plays a central role in numer-
ous surveys on wireless system radio access networks
[4], [5]. To summarize, solutions to user association
challenges in the literature can be broadly categorized
into three approaches: classical optimization techniques,
machine learning methods, and other heuristic strategies.

In classical optimization, the need for convexity results
in simpler modeling [6], [7]. A typical approach is
solving the dual Lagrangian optimization problem, but
to avoid a duality gap, additional constraints must be
introduced, which simplify both the problem’s modeling
and dynamics [8]. Other proposals jointly optimize user
allocation and providers placement, for example in the
event of a UAV deployment or when choosing relay
base stations [9]-[11]. As a turnaround for mixed-integer
and no-convex programming problems risen from the
discrete arrivals and fairness utilities (i.e. log sum or
similar), many articles extend the primary optimization
problem through relaxations, achieving suboptimal yet
working solutions [9], [12], [13]. Other proposals involve
jointly optimizing user association and power allocation,
in order to minimize the system’s energy consumption,
which can be tackled through dividing the optimization
problem into two (or more) sub-problems [9], [10], [14].

The machine learning boom has promoted data-
centered approaches, where user association policies are
not derived from a mathematical setting but are learned
instead [15]. A particularly fruitful paradigm for resource
allocation is reinforcement learning, as an agent makes

decisions (following a certain policy) and learns from
experience (improving such policy). In [16], authors
propose the use of multi-agent reinforcement learning
to first choose the providing base station, and afterwards
dealing with power allocation, yet they minimize time
delays with no considerations on fairness. Reinforcement
learning (RL) suffers from the curse of dimensionality,
and the mainstream approach to overcome this curse is to
approximate some function of interest of our problem by
using (mostly) supervised learning. As communications
systems are prone to graph representation, these RL
formulations have been pioneers in using GNNs to
approximate the desired function. An important feature
for allocation policies is the possibility for distributed
resource assignment, avoiding the bottlenecks introduced
by information gathering and/or centralized algorithms.
This property makes of graph representations an interest-
ing choice, but their application to the UA problem has
usually fallen short of decentralized solutions [17]-[19].

There are interesting heuristics that are driven by the
maximization of the allocated users, and have the virtue
of proposing online fast-adapted algorithms for user as-
sociation and frequency selection as in [20], [21]. These
works do not take into account fairness in the utility
achieved, which in our opinion is a must when dealing
with resource allocation, and has to be included in the
objective functions. A recent work optimizing network
resources, [22] proposes the use of bipartite graphs to
model user and base stations but focusing on the cover-
age maximization problem through manipulation of the
base stations’ transmission power and antenna alignment,
not tackling the user association scheme. They state the
virtues of the permutation equivariance property, which
will also be a part of our current proposal.

Most similar to our proposal [23], tackles the user
association problem by using a multi-agent reinforce-
ment learning algorithm. To simplify the problem, they
consider that each base station can serve only one user
at each time and use the max SINR policy by default,
only choosing which user to serve and at what time.
On their proposal, [24] optimize the user association
and transmit beamforming vectors in order to mitigate
interference by using safe reinforcement learning, and
iteratively update both decisions: user association and
beamforming. Although not all, many works insist on
the fairness of the proposed solutions, as in [11], [25].

This paper builds on our previous work on Al-driven
user association [26], [27], where we introduced an
initial version of GROWS under significantly simpler
conditions. In contrast, the new version of GROWTh
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Figure 1. System model. We consider at most one arrival at each
time-step. The combination of past decisions and the present arrival
constitutes the state of the system. The choice of which base station
associates with the currently arrived user is the action. After executing
an action, a new state is observed and a reward is obtained.

presented here features a fully distributed, user-centric
algorithm that eliminates the need for a central decision-
making agent. Additionally, we propose a novel graph
representation that incorporates the possibility of user
rejection, enabling more efficient utilization of system
resources. We emphatize that our new proposal takes
the fairness of the resource distribution into account,
and rename our algorithm Growth (Graph Representation
Of Wireless systems THroughput fair). This enhanced
representation allows for the modeling of more complex
and realistic scenarios, extending GROWTh applicability
to a wide range of wireless networks, including next-
generation mobile systems, FANETSs, and beyond.

III. PROBLEM STATEMENT

We consider the problem of user association in a
system with N base stations — see Figure 1. Let us
denote the time by a discrete index ¢ € {1,...,T}.
At each timeslot ¢, a user may arrive according to a
Bernoulli distribution of parameter p € [0, 1]. Let the
index u € N represent the order of arrival of the users,
and ¢!, and tl the arriving and departing times of user
u. The u-th user has a random discrete demand d,, € N,
and an SNR with base station n denoted by SNR;
with n = 1,..., N. Base stations have a set of time-
frequency resources (resource blocks, according to 5G
terminology) RB € N to distribute among connected
users.

When a candidate user u arrives, the system selects
action a,, € {1,..., N} and the user is served by base
station a,,, or the system selects a,, = 0 and the user is
rejected — the system having no available resources or
choosing to reject.

Let us define the system’s state s,, as the combination
of the user’s and base stations’ features, observed only on
decision times corresponding to arrival times ! Vu € U.

We summarize the base station’s state through the num-
ber of connected users and time statistics related to the
service given to the users: mean, variance, and minimum
of the estimated connection times with active users. We
then have the system’s state s, € RV *5, where each row
is the state of each base station:

Sy = s(ti) = [users(ti,n), SNRy p,dy,

—

th — ti min t/{ —t var(tﬁ — ti)]keN
Vueu/th >, (1)

with users(ti,n) denoting the number of users
served by base station n on decision instance u, while
th, mint], var(t,)Vu € U/t > ti denotes the mean,
minimum, and variance of the estimated ending times
for connected users, respectively.

Transition to the next state s,.; results from a
combination of the system’s dynamics (the stochastic
arrival of users) and the actions taken (the number of
users connected to a base station, which is deterministic).
Let us study the potential next states more closely.

Starting from state s,, the number of users
can increase based on the action wusers(ti,n) =
users(tt,,n) + 1(a, = n); the number of users may
also decrease, as users leave after their demand has been
satisfied between arrivals.

The next state time estimates for connected users to
base stations n are in direct relationship to different
factors, including: the peak rate that users have, the
number of users being served, and the remaining demand
for each user. These factors are entirely determined by
the current state and the action taken. As noted, the users’
features are stochastic.

We can now define the instantaneous reward of
the system as the utility achieved for connected users
between this decision instant and the following, after
taking action a,,.
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where F is an utility function evaluated on the active
user’s throughput over a timeslot. Furthermore, through-
put for a user is proportional to the assigned resources
and the rate achieved (r,(t)). By ® we denote the
internal distribution criterion that base stations follow;
for example, a simple ® policy could be to distribute



resources evenly between connected users [28]. The
utility function used is log(1 + th,), and we base this
utility and reward formulation on [26], [28].

Actions are selected according to a random policy
parameterized by a vector 0 € R, i.e., a, ~ 7(sy;0).
We wish to find the policy 7* that maximizes the
accumulated utility applied to the users’ throughput over
time. Finally, we define the discount factor v € [0, 1],
which serves as a measure of the importance of the
future, with which we state the RL problem as follows:

ﬂ[iv_

V=Vlp

max E

feR" @u ~ (su;6)

Using the Bellman equations, our algorithm will look
for the parameterized policy that maximizes the expected
discounted reward:

max v, (s) = max E;[Gy|Sy, = sy
m(0) (0 )

= lim

YR
V— Z Tttt

As the action and state spaces grow, the convergence
of traditional reinforcement learning algorithms becomes
increasingly challenging, and in some cases, compu-
tationally infeasible. A common approach is to ap-
proximate the policy (7(s,6)) or the value function
(Q(s,a,0)), by learning the parameters 6 that best rep-
resent the desired target function.

IV. GROWTH: A DISTRIBUTED ALGORITHM

We address the approximation of the Q-value function
by using graph neural networks, which in its more
general form can be seen as a convolutional neural
network applied to a graph structure [29], [30]. Assume
we have a certain graph G = (V, E), which we represent
through a so-called Graph Shift Operator (GSO). That is
to say, a matrix S € RIVIXIVI which respects the graph
sparsity (S;; # 0 whenever an edge between nodes 4
and j exists); e.g. the adjacency matrix. To each node
we associate a certain d-dimensional vector, resulting in
the graph signal matrix X € RIVIxd,

By computing the product SX, we generate a new
graph signal where each node aggregates information
from its neighboring nodes. By expressing SKX =
SK—1(SX), the resulting operation represents the aggre-
gation of information from nodes that are K hops away.
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Figure 2. Graph representation of the system, where the star graph
is constructed with the rejection node at the center. The rest of nodes
represent base stations and the signal of each node is a composition
of the base station and the user’s state.

In its most basic implementation, we obtain a single-
layer GNN (or graph perceptron) by applying a point-
to-point non-linear function o(+) to a linear combination
of these K signals:

X =g (Z SkXHk) ,

where H;, € R¥*¢ (for k = 0,...,K) act as the graph
filter taps (and change the signal’s dimension from d
to d’). By stacking L of these operations we obtain an
L-layered GNN.

A key feature of the proposed user association and
access control mechanism is its fully distributed nature.
This means that the algorithm is designed to operate
without relying on a centralized decision-making entity
for each incoming user. Instead, each user independently
acquires the state of all base stations, represented by
the matrix X, and decides which base station, if any,
connecting to. If the policy is approximated using a
function with a vector input, such as a Fully-Connected
Neural Network, certain limitations arise. This approach
requires a fixed ordering of the nodes and becomes
infeasible if the vector’s dimensionality changes, for
example, when the number of nodes in the network
increases.

Firstly, note that a GNN may be executed in a graph
with any given number of nodes (since it is characterized
by its filter taps Hy). Secondly, in the construction of the
GSO S we have also arbitrarily chosen an order for the
nodes.

However, unlike a vector-based representation of the
problem, a GNN is independent of the node ordering.
This is due to its permutation equivariant property,
which ensures the output remains consistent regardless
of how the nodes are arranged. To understand this,
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consider a permutation matrix P, which is a binary
matrix satisfying P1 = 1 and P'1 = 1. Reordering
the nodes and then computing the filter’s output, rep-
resented as (PTSP)(P'X), yields the same result as
first computing the output (SX) and then reordering
it, represented as P T (SX). This permutation-equivariant
property is naturally inherited by a GNN, as it performs
pointwise operations on the output of the filter.

As explained before, the algorithm is executed by the
incoming user. To build the graph representation, each
incoming user constructs a graph where the base stations
are nodes and the signal is the base stations’ state.
Instead of considering the whole network, the user only
includes those base stations it receives with the highest
quality. Note that the involved base stations’ connections
are represented through the GSO operator, making our
system capable to adapt to different wireless systems
(i.e. FANETS, 5G, etc.), and that the base stations’ state
includes information about the SINR but also about
their current utilization (number of connected users, time
statistics). In wireless systems (as 5G), mobile users
exchange information with surrounding base stations -
with different system information as the CQI (Channel
Quality Indicator) and other- and then negotiate the
connection with their preferred choice, meaning our
proposal does not involve any communication overhead.
Finally, and to allow the policy rejecting users, we
also include an extra node representing this decision.
In this case, the graph is constructed as a star, with
this “reject node” at the center, see Fig. 2. In order to
avoid bottlenecks at the rejection node, self-loops are
added to the shift operator, a common approach in graph
convolutional networks.

This construction, which we shall refer to as GROWTh
(Graph Representation of Wireless systems Throughput
fair), enables a fully distributed algorithm without requir-
ing any communication between base stations. Instead,
the incoming user independently gathers all necessary
information. Notably, the time and energy required for
the user to compute the optimal policy are minimal, as
this process involves only collecting the states of the
base stations and performing a forward pass through a
pre-trained GNN. Furthermore, by leveraging a GNN
to define the policy, the algorithm becomes permutation
equivariant, ensuring that decisions remain consistent re-
gardless of how the nodes are reordered. The advantages
of this property will be highlighted and discussed in the
following section.

Base stations and users positions in experiment 1 and 2.
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Figure 3. During training, users arrival is centered on the leftmost
base station, whereas during test, users’ arrival has shifted towards
the base station to the right.
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Figure 4. Comparison of both scenarios in the permutation experi-
ment. When tested in scenarios similar to those encountered during
training, both versions of the DDQN perform well (left figure).
However, when the arrival patterns change and users come close to
the other base station, as GROWTh maintains its performance, the
dense version of our algorithm struggles to adapt and performs poorly
(right figure). Unsurprisingly, both random and baseline achieve the
same results for both scenarios.

V. EVALUATION AND RESULTS

To develop a deep reinforcement learning implemen-
tation, we begin with the Double Deep Q-Learning
Network (DDQN) algorithm due to its simplicity and sta-
ble convergence properties. While more advanced DRL
algorithms exist, our primary objective is to validate
that the implemented (Markov) decision process is well-
defined and to demonstrate that the GNN outperforms a
traditional fully connected neural network. In a nutshell,
DDQN enhances stability by using two separate deep
networks: a policy network for action selection, and a
target network for action evaluation.

We develop two DDQN algorithms, one in which
the Q-value function is approximated by a GNN, and
another in which we use a classic three-layers fully



connected neural network. The GNN architecture we
take is implemented by using the Graph Convolutional
Network (GCN) as defined in [29], and its Pytorch
implementation — GCNConv.

We conduct a series of experiments, focusing on
two specific settings that highlight the strengths of
our proposal. First, we aim to demonstrate a key as-
pect of our algorithm: its ability to adapt to unseen
yet similar scenarios, leveraging the permutation equiv-
ariance of the GCN. Second, we evaluate the algo-
rithm’s performance in a real-world 5G deployment
in the city of Paris. All examples and their selected
parameters and hyper parameters can be found at
https://gitlab.fing.edu.uy/mrandall/growth.

Table 1
SUMMARY OF THE RESULTS ACHIEVED FOR THE TWO SCENARIOS
DESCRIBING THE PERMUTATION EXPERIMENT, AND FOR THE
PARIS EXPERIMENT.

Mean Utility Mean # of Rejections

Exp 1 | Exp 2 | Paris | Exp 1 | Exp 2 | Paris |
Baseline 59.8 58.5 47.1 76 72 97.5
Random 61.9 63 44.3 61 56.2 90
Dense 64.9 53.4 40.9 59 60.6 107.4
GROWTh 73.2 70.5 514 62 57.5 84.5

A. Permutation Equivariance

To evaluate our proposal, we compare it against three
different approaches: (a) a baseline algorithm that selects
the base station with the strongest signal-to-interference-
plus-noise ratio (SINR), (b) a random policy, and (c) a
modified version of our algorithm that employs a dense
network instead of the GNN. We refer to our proposal
as GROWTh.

We first consider a simple setting of three base stations
in a straight line, as shown in Figure 3. During training,
users arrive according to a normal distribution centered
around the leftmost base station. We subsequently test
two scenarios, referred to as Experiments 1 and 2: one
based on the initial setup and another where users cluster
around the rightmost base station. Numerical results
from these experiments are presented in Table I, in the
columns marked as Exp 1 and Exp 2.

Results for throughput utility are reported in Figures
4(a) and 4(b). As expected, the fully connected network
performs well in scenarios similar to those it was trained
on; however, it struggles to adapt to even minor changes.
In contrast, the permutation equivariance property of the
GNN allows GROWTh to adjust effectively, yielding re-
sults in experiment 2 comparable to those achieved with

Figure 5. We select a densely populated area where large crowds
gather, and select the 5G base stations deployed by a specific mobile
operator. We randomize mobile users with higher density around the
center of the figure, and random arrival times and demands.

the training realized in the first experiment. Naturally,
both the random and the baseline policy achieve similar
results in both scenarios, but systematically inferior to
GROWTHh.

An interesting conclusion from this first evaluation is
that our proposal not only enhances utility — defined
as a metric of user throughput (see Section III) — but
also reduces user rejection rates. Unlike the Baseline and
Random policies, which cannot treat user rejection as a
valid action, GROWTh algorithms have the possibility
to reject users. Although this presents a challenge when
comparing rejection rates, our algorithm intelligently
selects which users to accept, resulting in fewer overall
rejections. In particular, this improvement is achieved
without specific reward tuning for this goal; instead,
it comes from a more effective allocation policy that
creates additional capacity for new users.

B. The Paris Scenario

Next, we consider an evaluation scenario character-
ized by high user density and traffic load, which can
significantly degrade system performance, particularly
during large gatherings. To illustrate this, we focus on
Paris, the host city for the 2024 Olympic Games, as
a case study for managing user association in crowded
environments. We utilize the 5G deployment data from a
selected operator! to determine the positions of the base
stations, as shown in Figure 5, and we distribute users
following a gaussian distribution around the center of

"Data was sourced from nperf.com, which provided information
on the operator’s 5G deployment, last visited on December 2024.
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Figure 6. Users connected per base station under the Baseline policy.
It is evident that this algorithm prioritizes base stations with stronger
SINR, filling them sequentially. In extreme cases, the resources of
the farthest base stations remain entirely unused.

the selected area to simulate a crowd gathering. As in
other simulations, users arrive at random times and with
randomized demands. The seven different base stations
are individually identified by an ID and a color, matching
the results depicted in Figures 6, 7, 10, and 11. The
results of this analysis are summarized in Table I, in the
columns marked as Paris.

As expected, the baseline approach in Figure 6 leads
to saturation of the base station capacities, starting with
the most centrally located stations and then filling them
sequentially. In contrast, Figure 7 illustrates how the base
stations are populated with connected users throughout
an episode, effectively distributing them among all avail-
able candidates.

The users’ connection to each base station during
an episode is presented for the baseline and GROWTh
on figures 8 and 9. Our proposal is able to use the
farthest base stations when the closer ones are saturated,
meaning our problem formulation is able to address both
objectives: to optimize fair rate utility and to minimize
rejections, whereas the baseline is very similar to a
“closest base station” heuristic.

As we analyze the delivered throughput for each base
station in Figures 10 and 11, the advantages of the
GROWTh policy become evident. Unlike the Baseline
approach, which tends to saturate the nearest base sta-
tions — typically those positioned centrally with higher
SINR ratio — the GROWTh policy ensures that all base
stations are actively utilized. This broader engagement
not only enhances overall system performance but also

Number of users connected per Base Station, GROWTh
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Figure 7. Users connected per base station under the GROWTh
policy. In this scenario, all base stations actively serve users, reflecting
a more evenly distributed approach that optimizes resource utilization
across the entire network.
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Figure 8. For the Paris experiment, distribution of users connected
to each base station under the Baseline policy. The shape is closer
to a “closest neighbor” policy, with some differences due to random
fading and base stations saturation.

mitigates the risk of congestion in high-demand areas.
By distributing user connections more evenly across the
network, the GROWTh policy maximizes throughput ef-
ficiency and better accommodates varying user densities.

Similar to the previous experiment, the GROWTh
policy not only achieves higher utility, but also results
in fewer user rejections compared to all alternative
approaches — cf. Table I. It is important to note that
while our algorithm can explicitly take the ’rejection’
action, the baseline and random policies do not have
this capability, which could skew the comparison of
rejection rates in their favor. This discrepancy is par-
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Figure 9. For the Paris setting, distribution of users connected to
each base station under the GROWTh policy. The proposed policy
is able to redirect incoming users to farther base stations when close
ones are already serving a number of connections.
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Figure 10. For the Paris experiment, we compare the rates delivered
per base station. In this case, the baseline’s saturation effect makes
it so that mainly BS 3-5 are used, achieving higher rates for those
but leaving unused resources in the rest of BS.

ticularly evident when users receive strong signals from
all base stations; in such cases, a random policy tends
to distribute connections uniformly across the available
stations. While this uniformity may lead to a lower
rejection rate, it often results in sub-optimal utility due
to poor resource allocation.

VI. CONCLUDING REMARKS

We presented GROWTh, a distributed algorithm for
user association in wireless networks. We comprehen-
sively defined the essential components of a reinforce-
ment learning agent and developed a graph representa-
tion that effectively captures the nuances of our problem.
By leveraging a graph neural network, we exploited the
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Figure 11. For the Paris experiment, delivered rates per Base Station.
We can see that in contrast to the baseline, GROWTh is able to
distribute resource through the whole system. Notice that for the
closest BS (3-5), GROWTh delivered rates are slightly lower than for
the baseline, but it still manages to achieve higher rewards through
distribution of users and better usage of resources.

underlying graph structure to enhance decision-making
in user association.

Our experimental results validated the permutation
equivariance property of the graph neural network,
demonstrating that our approach offers a significant
advantage in terms of user throughput as compared to
existing algorithms, including commonly used heuris-
tics. Additionally, our algorithm is capable of serving
more users without requiring explicit reward tuning to
minimize rejections. Moreover, the graph representation
provides a pathway for generalizing to unseen scenarios,
which we have yet to explore.

This capability represents a promising direction for
future work, in which we wish to demonstrate GROWTh
potential for generalization. There are also pending mod-
ifications to the reward structure to account for fairness
in the resource distribution — i.e., reward engineering, to
include handover scenarios — e.g., by using time-centered
neural networks as LSTM or Transformer, or to mini-
mize energy consumption by adding restrictions to our
problem’s formulation (as in constrained reinforcement
learning).
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