Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/51260
Cómo citar
Título: | A deep first-order system least squares method for the obstacle problem |
Autor: | Acosta, Gabriel Belén, Eugenia Bersetche, Francisco M. Borthagaray, Juan Pablo |
Tipo: | Otro |
Fecha de publicación: | 2025 |
Resumen: | We propose a deep learning approach to the obstacle problem inspired by the rstorder
system least-squares (FOSLS) framework. This method reformulates the problem as a
convex minimization task; by simultaneously approximating the solution, gradient, and Lagrange
multiplier, our approach provides a
exible, mesh-free alternative that scales e ciently to highdimensional
settings. Key theoretical contributions include the coercivity and local Lipschitz
continuity of the proposed least-squares functional, along with convergence guarantees via Γ-convergence theory under mild regularity assumptions. Numerical experiments in dimensions up
to 20 demonstrate the method's robustness and scalability, even on non-Lipschitz domains. |
Financiadores: | Proyecto Fondo Clemente Estable (modalidad II), FCE_3_2022_1_172393. |
Citación: | Acosta, G., Belén, E., Bersetche, F. y otros. A deep first-order system least squares method for the obstacle problem [en línea] 2025. 26 p. |
Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Aparece en las colecciones: | Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia) |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
ABBB25.pdf | Trabajo de investigación | 1,41 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons