
A DEEP FIRST-ORDER SYSTEM LEAST SQUARES METHOD FOR THE

OBSTACLE PROBLEM

GABRIEL ACOSTA, EUGENIA BELÉN, FRANCISCO M. BERSETCHE,
AND JUAN PABLO BORTHAGARAY

Abstract. We propose a deep learning approach to the obstacle problem inspired by the first-
order system least-squares (FOSLS) framework. This method reformulates the problem as a

convex minimization task; by simultaneously approximating the solution, gradient, and Lagrange

multiplier, our approach provides a flexible, mesh-free alternative that scales efficiently to high-
dimensional settings. Key theoretical contributions include the coercivity and local Lipschitz

continuity of the proposed least-squares functional, along with convergence guarantees via Γ-

convergence theory under mild regularity assumptions. Numerical experiments in dimensions up
to 20 demonstrate the method’s robustness and scalability, even on non-Lipschitz domains.

1. Introduction

Variational inequalities arise in the modeling of several nonlinear phenomena such as contact,
friction, and plasticity [9, 23, 31]. A classic example is the equilibrium position of an elastic mem-
brane constrained to remain above a given obstacle. These problems are inherently challenging
for numerical approaches due to the low regularity of solutions and the a priori unknown con-
tact boundary. While extensive work has been done on numerical methods for such problems,
including finite element approaches (see, for example, [10, 17, 34]), the exploration of least-squares
formulations remains relatively limited, particularly in contexts beyond finite element methods. We
may mention [16] as one of the first works to formalize least-squares formulations for the obstacle
problem. The first-order system least-squares (FOSLS) approach proposed in that reference refor-
mulates the obstacle problem by introducing auxiliary variables, such as the Lagrange multiplier
and the gradient of the solution. This transforms the obstacle problem into a convex minimization
problem subject to linear constraints. The FOSLS framework has demonstrated strong potential
for providing stable approximations, facilitating error estimation, and enabling adaptivity.

In parallel, deep learning has emerged as a powerful tool for approximating solutions to partial
differential equations (PDEs) by minimizing loss functionals that enforce the governing equations
and boundary conditions [15, 18, 26, 27, 30, 32, 36]. While not always competitive with classical
methods in low-dimensional settings, neural networks show promise in high-dimensional contexts
and for problems with complex geometries [14, 35]. Importantly, neural network formulations based
on first-order systems [6, 26, 27, 28] circumvent the need for second-order derivatives in the cost
functional, streamlining computation and enabling the approximation of weak solutions.

GA has been supported in part by PIP-2023, grant 11220220100246CO.

FMB has been supported in part by PIP-2023, grant 11220220100246CO.
JPB has been supported in part by Fondo Clemente Estable grant 172393.

1

2 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

This paper bridges the gap between the two aforementioned frameworks by proposing a deep
learning approach based on the FOSLS methodology for the obstacle problem. Specifically, we
adapt the Deep FOSLS framework [6] to the first-order system formulation introduced in [16].
This approach provides a mesh-free alternative to traditional discretization methods that leverages
the flexibility and scalability of neural networks. By simultaneously approximating the solution,
the gradient, and the Lagrange multiplier, we demonstrate the efficiency and adaptability of this
methodology in solving obstacle problems in high-dimensional instances. Moreover, the formulation
within the Deep FOSLS framework enables the derivation of convergence results under appropriate
regularity assumptions.

1.1. Related work. Recent advancements in the literature have explored the approximation of
solutions to the obstacle problem through machine learning techniques. In [8], the obstacle prob-
lem is reformulated as a penalized minimization problem whose solutions converge to those of the
original problem as the penalty parameter approaches infinity. The authors employ neural networks
to approximate these minimizers, discretizing the cost functional through Monte Carlo integration.
By decomposing the total error into three components—(i) an approximation error (dependent on
network depth and width), (ii) a statistical error (governed by sample size), and (iii) an optimiza-
tion error (related to the empirical loss minimization)—they establish non-asymptotic convergence
rates under regularity assumptions on the penalized problem’s solutions. In [38], the authors pro-
pose two distinct approaches for solving the obstacle problem in one and two dimensions. The
first method strictly enforces the obstacle constraint through direct energy minimization, while the
second employs a penalized formulation that reduces to solving a linear Dirichlet problem when the
constraint is inactive. Both approaches conduct the minimization within a function space parame-
terized by shallow neural networks. The convergence analysis leverages the universal approximation
properties of neural networks under the L∞-norm. Reference [2] approaches the obstacle problem
within a Physics-Informed Neural Networks (PINNs) framework, minimizing the L2-norm of the
PDE residual while strongly enforcing boundary conditions. Similarly, [32] employs an analogous
residual-based loss function but incorporates boundary conditions through penalization; this ap-
proach is subsequently applied to parabolic obstacle problems arising in American options pricing.
Additionally, [12] formulates the obstacle problem as a quadratic programming problem using finite
element methods, subsequently solved with a neural network model.

1.2. Organization of the paper. The structure of this paper is as follows. Section 2 introduces
the reformulation of the obstacle problem as a first-order system. Section 3 outlines the Deep FOSLS
approach, detailing the imposition of boundary conditions and the training strategy. In Section 4,
we establish the convergence of the method through Γ-convergence theory. Section 5 concludes
with numerical experiments in dimensions up to 20, demonstrating the method’s scalability and
robustness even on non-Lipschitz domains.

2. Variational Formulation and First-Order Reformulation

This section offers a brief theoretical background on the obstacle problem and discusses the
theoretical foundation for reformulating it as a first-order system, which a critical step in developing
our deep learning methodology. Let Ω ⊂ Rd be an open, bounded domain with Lipschitz boundary,
g ∈ H1

0 (Ω) and f ∈ L2(Ω). The obstacle problem consists in finding

(2.1) u0 := arg min
v∈K

I(v),

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 3

where I is the classical Dirichlet energy functional

I : H1
0 (Ω)→ R, I(v) =

1

2

∫
Ω

|∇v|2 −
∫

Ω

fv,

and K the convex set
K := {v ∈ H1

0 (Ω) : v ≥ g a.e. in Ω}.

It is well-known that this energy-minimization problem admits a unique solution u0 ∈ K, and
that such a solution satisfies the variational inequality

(2.2) (∇u0,∇(v − u0)) ≥ (f, v − u0) ∀v ∈ K,
where the parentheses stand for the duality pairing in L2(Ω). Furthermore, in the following we
shall denote the L2(Ω)-norm by ‖ · ‖.

In the space H1
0 (Ω), we have the well-known Poincaré inequality

‖v‖ ≤ CP ‖∇v‖ ∀v ∈ H1
0 (Ω).

The constant CP only depends on the diameter of Ω. This results allows one to obtain the following
simple stability bound for solutions to the obstacle problem.

Lemma 2.1 (H1-stability). Let f ∈ L2(Ω), g ∈ H1
0 (Ω), and u0 ∈ K satisfy (2.2). Then,

(2.3) ‖∇u0‖ ≤ C (‖f‖+ ‖∇g‖) ,
with a constant C = C(Ω).

Proof. We use (2.2) with v = g:

‖∇u0‖2 ≤ (∇u0,∇g) + (f, u0 − g) ≤ 1

2
‖∇u0‖2 +

1

2
‖∇g‖2 + ‖f‖‖g‖+ ‖f‖‖u0‖.

For some ε > 0 to be chosen, we apply Young’s and Poincaré’s inequalities to obtain

‖f‖‖u0‖ ≤
‖f‖2

4ε
+ ε‖u0‖2 ≤

‖f‖2

4ε
+ εC2

P ‖∇u0‖2.

Therefore, we deduce (
1

2
− εC2

P

)
‖∇u0‖2 ≤

1

2
‖∇g‖2 + ‖f‖‖g‖+

‖f‖2

4ε
.

To conclude, it suffices to fix ε such that the term in parenthesis in the left hand side is positive
and apply the Poincaré’s inequality to g ∈ H1

0 (Ω). �

Under additional regularity hypotheses (cf. [23]), the energy minimizer u0 ∈ K satisfies the
complementarity-form equation

(2.4)

{
min{−∆u0 − f, u0 − g} = 0 in Ω,

u0 = 0 on ∂Ω.

In this work, following [16], we consider an equivalent reformulation of the obstacle problem as a
first-order least squares system. For that purpose, we introduce two auxiliary variables: the flux
density

φ0 := ∇u0 ∈ L2(Ω;Rd),
and the Lagrange multiplier

λ0 := −∆u0 − f ∈ H−1(Ω) := [H1
0 (Ω)]′.

4 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

In the following, we employ angle brackets to denote the H−1(Ω)-H1
0 (Ω) duality pairing. We

consider the space

V := {v = (u,φ, λ) ∈ H1
0 (Ω)× L2(Ω; Rd)×H−1(Ω) : divφ+ λ ∈ L2(Ω)},

with norm

‖(u,φ, λ)‖V :=
(
‖∇u‖2 + ‖φ‖2 + ‖ divφ+ λ‖2

) 1
2 ,

introduce a least-squares functional J : V → R,

(2.5) J (q; f, g) := ‖ divφ+ λ+ f‖2 + ‖∇u− φ‖2 + 〈λ, u− g〉,
and the convex set

KV := {v = (u,φ, λ) ∈ V : u ≥ g, λ ≥ 0},
and study the minimization problem

(2.6) q0 = arg min
v∈KV

J (v; f, g).

According to [16, Theorem 1], problems (2.1) and (2.6) are equivalent: the unique solution of
(2.6) can be characterized as q0 = (u0,∇u0,−∆u0 − f), where u0 ∈ H1

0 (Ω) is the unique solution
to (2.1).

Even though the functional J is suitable for the analysis we pursue in this paper, our approach
makes use of Monte Carlo integration; we therefore prefer to avoid the duality pairing in J and
replace it with suitable inner products in L2(Ω). For the sake of rewriting J , let us consider a
triple v = (u,φ, λ) ∈ V. Because γ := divφ+ λ ∈ L2(Ω), we can integrate by parts to rewrite the
last term in (2.5) as

〈λ, u− g〉 = 〈γ − divφ, u− g〉 = (γ, u− g) + (φ,∇(u− g)).

Therefore, we introduce the space

W := H1
0 (Ω)× L2(Ω; Rd)× L2(Ω)

furnished with the product norm

‖(u,φ, γ)‖W :=
(
‖∇u‖2 + ‖φ‖2 + ‖γ‖2

) 1
2 ,

the convex set

KW := {w = (u,φ, γ) ∈ W : u ≥ g, γ ≥ divφ},
and the functional L : W → R

(2.7) L(w; f, g) := ‖γ + f‖2 + ‖∇u− φ‖2 + (γ, u− g) + (φ,∇(u− g)).

We are interested in the minimization problem

(2.8) p0 = arg min
w∈KW

L(w; f, g).

It is clear that problems (2.6) and (2.8) are equivalent. Indeed, we can define the bijective,
norm-preserving mapping

(2.9) V 3 (u,φ, λ) 7→ (u,φ,divφ+ λ) ∈ W;

we point out that the restriction of this map to KV is onto KW . The equality J (u,φ, λ) =
L(u,φ,divφ + λ) follows immediately from the definitions of both functionals. Thus, L has a

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 5

unique minimizer in KW and it is given by p0 := (u0,φ0, γ0), where q0 = (u0,φ0, λ0) is the
minimizer of J in KV , and γ0 := λ0 + divφ0. Recalling that q0 = (u0,∇u0,−∆u0 − f), we obtain
p0 = (u0,∇u0,−f).

The following theorem yields the coercivity of L over KW .

Proposition 2.1 (coercivity). Let p0 ∈ KW satisfy (2.8). Then, there exists some C = C(Ω) > 0
such that

L(p; f, g) ≥ C‖p− p0‖2W ∀p ∈ KW .

Proof. This is a rewriting of [16, Theorem 1] in terms of the admissibility class KW . Indeed, such
a result states that if q0 ∈ KV solves (2.6), then

J (q; f, g) ≥ C‖q − q0‖2V ∀q ∈ KV .
Given p = (v, τ , ξ) ∈ KW , we use (2.9) to introduce q = (v, τ , ξ − div τ) ∈ KV and deduce

L(p; f, g) = J (q; f, g) ≥ C‖q − q0‖2V = C‖p− p0‖2W .
�

We next prove the local Lipschitz continuity of L around the minimizer p0.

Proposition 2.2 (local Lipschitz continuity). Let p0 ∈ KW satisfy (2.8). Then, there exists some
C = C(Ω, f, g) > 0 such that

L(p; f, g) ≤ C(1 + ‖p− p0‖W) ‖p− p0‖W ∀p ∈ KW .

Proof. Let p = (v, τ , ξ) ∈ KW . Then,

L(p; f, g) = ‖ξ + f‖2 + ‖∇v − τ‖2 + (ξ, v − g) + (τ ,∇(v − g)).

The unique minimizer of L in KW is

p0 := (u0,φ0, γ0) = (u0,∇u0,−f),

where u0 ∈ H1
0 (Ω) is the solution of the obstacle problem, and therefore

(−divφ0 + γ0)(u0 − g) = 0 a.e. in Ω.

Using these properties, we can write

L(p; f, g) =‖ξ − γ0‖2 + ‖∇(v − u0)− (τ − φ0)‖2

+ (ξ, v − g)− (γ0, u0 − g) + (divφ0, u0 − g) + (τ ,∇(v − g)).

On the one hand, it is clear that

‖ξ − γ0‖2 + ‖∇(v − u0)− (τ − φ0)‖2 ≤ C‖p− p0‖2W .

On the other hand, we can bound

|(ξ, v − g)− (γ0, u0 − g)| = |(ξ, v − u0) + (ξ − γ0, u0 − g)| ≤ ‖ξ‖‖v − u0‖+ ‖ξ − γ0‖‖u0 − g‖
≤ ‖ξ − γ0‖‖v − u0‖+ ‖γ0‖‖v − u0‖+ ‖ξ − γ0‖‖u0 − g‖
≤ ‖p− p0‖2W + (‖γ0‖+ ‖u0 − g‖) ‖p− p0‖W ,

and similarly

|(divφ0, u0 − g) + (τ ,∇(v − g))| ≤ ‖p− p0‖2W + (‖φ0‖+ ‖u0 − g‖) ‖p− p0‖W .

6 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

We recall γ0 = −f and φ0 = −∇u0. Because u0 ∈ H1
0 (Ω), we can collect the estimates above and

apply the Poincaré inequality together with (2.3) to conclude the desired result. �

3. Description of the method

We propose a method to approximate the unique minimizer (u0,φ0, γ0) of the functional in (2.7)
by using neural networks. A natural, direct approach involves seeking a set of parameters Θ0 ∈ Rm
such that

L(uΘ0 ,φΘ0 , γΘ0) = min
Θ∈Rm

L(uΘ,φΘ, γΘ),

with functions (uΘ,φΘ, γΘ) belonging to a suitable neural network space. However, a critical
challenge arises: the neural network approximations (uΘ,φΘ, γΘ) are not guaranteed a priori to
satisfy the admissibility constraints uΘ ≥ g, γΘ ≥ divφΘ and the homogeneous Dirichlet boundary
condition on uΘ. It is a common practice in neural network approaches to weakly impose such
constraints through penalty terms added to the loss functional. In contrast, our method enforces
these conditions strongly by design, ensuring strict adherence throughout the optimization process.
For boundary conditions, we adopt the strategy proposed in [5], where pre-training the network to
explicitly satisfy boundary data reduces the number of iterations needed for convergence.

As discussed in Section 3.1 below, we initially create certain auxiliary functions to ensure
(uΘ,φΘ, γΘ) ∈ KW for all Θ ∈ Rm. The optimization procedure involves sampling N points
{xk}Nk=1 ⊂ Ω and approximating

L(uΘ,φΘ, γΘ) ≈ LN (uΘ,φΘ, γΘ),

at each step of a gradient descent algorithm, where LN is defined as

LN (u,φ, γ) :=
|Ω|
N

N∑
k=1

(
γ + f(xk)

)2
+
∣∣∇u(xk)− φ(xk)

∣∣2
+ γ(xk)

(
u(xk)− g(xk)

)
+ φ(xk) ·

(
∇u(xk)−∇g(xk)

)
.

(3.1)

We expose the details below.

3.1. Strong imposition of boundary and admissibility conditions. We follow ideas from
[5, 6, 33] about the imposition of the boundary conditions and restrictions. Instead of trying to
directly compute either u or γ and incorporate boundary conditions or restrictions by a penalization
term, we shall enforce them in the construction of the neural network approximations. For that
purpose, we make use of the following notion.

Definition 3.1 (surrogate distance function). Let Γ ⊂ ∂Ω be a closed set. We say that a Lipschitz
continuous function dΓ : Ω→ R is a surrogate distance function if there exist constants c1, c2 ∈ R>0

such that c1dΓ(x) ≤ dist(x,Γ) ≤ c2dΓ(x) for all x ∈ Ω.

Notice that the function dist(x,Γ) is itself a surrogate distance function. However, since an
explicit expression for dist(x,Γ) is seldom available, we prefer to state our results in terms of a
computable substitute dΓ(x). Keeping that in mind, we briefly comment on the use of surrogate
distance functions in the strong imposition of admissibility and Dirichlet boundary conditions at
a continuous level. Consider a Lipschitz continuous function a : R → [0,∞) such that a(t) = 0 if
t = 0. In the computation of u in either (2.5) or (2.7), we restrict the class of functions to be

(3.2) u(x) := g(x) + d∂Ω(x) a(v(x)),

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 7

where the unknown is the function v : Ω → R, g is the obstacle, and d∂Ω is a surrogate distance
function to ∂Ω. In a similar fashion, we can incorporate the condition λ ≥ 0 by considering

(3.3) γ(x) := divφ(x) + a(η(x)),

and the new unknown is the function η : Ω → R. Note that, in this setting, a(η) plays the role of
the Lagrange multiplier λ. Therefore, we can seek y = (v,ψ, η) such that the corresponding tuple
(u,φ, γ), with u given by (3.2), ψ = φ, and γ according to (3.3), minimizes the loss function L.
The distinction in notation for the flux variable –employing ψ rather than φ– serves to differentiate
its role within two distinct contexts. Specifically, ψ denotes a component of the triple (v,ψ, η),
which belongs to an unconstrained function space, whereas the notation (u,φ, γ) is reserved for
admissible triples satisfying suitable constraints.

3.2. Computational aspects. In the following, we assume the user has provided a surrogate
distance function as in Definition 3.1. For a comprehensive analysis on the construction of such
functions, even with higher differentiability properties than those required in this work, we refer
to [33]. The surrogate distance can also be approximated by a neural network, as described in
[6]. We consider a set of random points {xk}Nk=1 ⊂ Ω and aim to minimize the cost functional
LN introduced in (3.1). The trainable parameters Θ emerge in the computation of the auxiliary
functions v and η from the construction of u and γ (see (3.2) and (3.3)).

In broad terms, the method we propose can be summarized as follows. Until some stop criterion
is reached, do:

• Sample random points {xk}Nk=1 ⊂ Ω.
• Update parameters: Θ← Θ− `∇ΘLN (uΘ,φΘ, γΘ).
• Adjust learning rate `.

The computation of LN (u,φ, η) requires evaluating the derivatives of u and φ with respect to
the input variables at {xk}Nk=1. Since all the involved functions are smooth, these derivatives can
be efficiently computed by using back propagation.

For the numerical examples, we implemented our algorithm within the PyTorch library. We
utilized one- to three-layer neural networks with a SoftPlus activation function for the main variables
v and ψ. A piecewise constant neural network was used for the variable η and a three-layer network
with a ReLU activation function was employed for high-dimensional examples. The ADAM [24]
optimization algorithm demonstrated good results in numerical experiments. Further details about
the implementation of the method can be found in Section 5.

4. Convergence analysis

We consider a set of unconstrained neural network functions

Cm :=
{

(vΘ,ψΘ, ηΘ) : vΘ : Rd → R, ψΘ : Rd → Rd, ηΘ : Rd → R
}
,(4.1)

where we collect all the parameters in a vector Θ ∈ Rm. The choice of the neural network ar-
chitecture is intentionally left ambiguous at this point. In what follows, we will assume certain
approximation properties of this set and later focus on a specific instance of Cm and a variant from
it.

8 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

Assuming that we are able to construct a surrogate auxiliary function d∂Ω as in Definition 3.1,
and considering a suitable choice of a : R→ [0,∞), we define the set of discrete admissible functions

Wm :=
{
pΘ = (uΘ,φΘ, γΘ) : uΘ = g + d∂Ωa(vΘ), φΘ = ψΘ,

γΘ = divψΘ + a(ηΘ), (vΘ,ψΘ, ηΘ) ∈ Cm
}
,

(4.2)

which we regard as a subset of W = H1
0 (Ω) × L2(Ω; Rd) × L2(Ω) and therefore furnish with the

norm ‖(uΘ,φΘ, γΘ)‖W = (‖∇uΘ‖2 + ‖φΘ‖2 + ‖γΘ‖2)
1
2 . We remark that the fulfillment of the

boundary and admissibility conditions is guaranteed within the set Wm, in the sense that uΘ = 0
whenever d∂Ω = 0, and moreover uΘ ≥ g, and γΘ − divφΘ ≥ 0.

4.1. Γ-convergence. We seek to prove the convergence of the neural network approximations
obtained through our method to the minimizers of the least-squares functional L in (2.7). To this
end, we employ Γ-convergence theory, which guarantees that if a sequence of functionals Γ-converges
and their minimizers converge, then solutions to the limit problem exist, along with the convergence
of both minimum values and minimizers. Below, we provide a brief review of Γ-convergence and
some key results relevant to this work. We refer to [7] for a comprehensive treatment of the subject.

Definition 4.1 (sequential Γ-convergence). Let X be a metric space and let Fn, F : X → R, where

R := [−∞,+∞]. We say that Fn Γ-converges to F (and write Fn
Γ−→ F) if, for every x ∈ X we

have

• (lim-inf inequality) for every sequence {xn}n∈N ⊂ X converging to x,

F (x) ≤ lim inf
n→∞

Fn(xn);

• (lim-sup inequality) there exists a sequence {xn}n∈N converging to x such that

F (x) ≥ lim sup
n→∞

Fn(xn).

Definition 4.2 (equi-coercivity). Let {Fn}n∈N be a sequence of functions Fn : X → R. We say that
{Fn} is equi-coercive if for all t ∈ R there exists a compact set Kt ⊂ X such that {Fn ≤ t} ⊂ Kt.

Our primary motivation for employing Γ-convergence theory stems from the following result,
which states that if a sequence of functionals is equi-coercive and Γ-converges, then any corre-
sponding sequence of minimizers converges to a minimizer of the Γ-limit functional. In essence,
Γ-convergence, together with an appropriate compactness condition, ensures the convergence of
minimizers.

Theorem 4.1 (fundamental theorem of Γ-convergence). Let (X, d) be a metric space, {Fn}n∈N be

an equi-coercive sequence of functions on X, and F be such that Fn
Γ−→ F . Then,

∃min
X

F = lim
n→∞

inf
X
Fn.

Moreover, if {xn}n∈N is a precompact sequence in X such that limn→∞ Fn(xn) = limn→∞ infX Fn,
then every limit of a subsequence of {xn} is a minimum point for F .

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 9

4.2. Convergence of the method. Our analysis is based on two generic hypotheses on the neural
network functions. In Section 4.3, we describe specific instances of the set Cm in which these
assumptions are verified.

Assumption 4.1. We assume the following conditions. In first place, we state two conditions that
we shall assume throughout the remainder of the paper.

1) We recall that our method is based on the first-order formulation developed in Section 2, which
requires Ω be a bounded, Lipschitz domain, f ∈ L2(Ω), and g ∈ H1

0 (Ω).
2) We additionally assume that the neural network functions in Cm (cf. (4.1)) are such that

• the activation functions used for vΘ,φΘ are Lipchitz continuous;
• the activation functions used for ηΘ are either bounded or Lipschitz continuous.

From these, to construct the classes Wm, we need to fix a surrogate auxiliary function d∂Ω

(Definition 3.1) and a Lipschitz continuous function a : R→ [0,∞).

Besides these two structural assumptions, we list below two conditions on the approximation
capability and stability with respect to parameters of the neural network classes. We recall that the
neural network class Wm is deemed as a subset of W = H1

0 (Ω)× L2(Ω; Rd)× L2(Ω).

3) Let p0 ∈ KW be given by (2.8). Then, p0 can be approximated by the neural network spaces,
that is, we assume that

(H1) d(p0,Wm) := inf
pΘ∈Wm

‖p0 − pΘ‖W → 0 as m→∞.

4) Let R > 0 be fixed as in (4.3) below. We assume

(H2) The map B(0, R)→Wm such that Θ 7→ pΘ is continuous.

The first two conditions are essential for our analysis, while in Section 4.3, we give examples of
constructions of the set Cm in which the latter two assumptions are verified.

Regularization plays an instrumental role in neural network approximations: one trades a small
decrease in training accuracy for better generalization, thus reducing overfitting. In the context
of numerical PDEs, regularization avoids convergence towards non-physical (in our setting, non-
variational), almost everywhere solutions [6]. Given R > 0, that shall remain fixed, we consider
L : Rm → R as

(4.3) L(Θ;R) :=

{
L(pΘ) if |Θ| ≤ R,
+∞ otherwise.

On the other hand, we recall that in the admissible class Wm we have the representation uΘ =
g + d∂Ωa(vΘ), ψΘ = φΘ, γΘ = divφΘ + a(ηΘ) with (vΘ,ψΘ, ηΘ) ∈ Cm, so that we can rewrite
the discrete loss functional (3.1) as

(4.4) LN (Θ; f, g) =
|Ω|
N

N∑
k=1

4∑
i=1

Gi(Θ, xk),

with G1, G2, G3, G4 : Rm × Ω→ R given by

G1(Θ, x) := |divψΘ(x) + a(ηΘ(x)) + f(x)|2,
G2(Θ, x) := |∇g(x) +∇(d∂Ωa(vΘ))(x)−ψΘ(x)|2,
G3(Θ, x) := [divψΘ(x) + a(ηΘ(x))] d∂Ω(x)a(vΘ(x)),

G4(Θ, x) := ψΘ(x) · ∇(d∂Ωa(vΘ))(x).

(4.5)

10 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

The four functions Gi correspond to the four terms in the sum (3.1) upon the correspondence
u 7→ g + d∂Ωa(vΘ), φ 7→ ψΘ, γ 7→ divψΘ + a(ηΘ).

We split the proof of convergence of our method into several steps. We start by proving the
following auxiliary lemma, that shows certain boundedness properties of the functions in (4.5) with
respect to the neural network parameters. In the following, we restrict the domain of all neural
network functions to be Ω.

Lemma 4.1 (boundedness). Let G1, . . . , G4 be defined as in (4.5), with discrete admissible functions
given by (4.2), and fix R > 0 according to (4.3). Then, under Assumption 4.1, it holds that
G3, G4 ∈ L∞(B(0, R) × Ω). Moreover, there exist s1, s2 ∈ L1(Ω), depending on R, such that

|Gi(Θ, x)| ≤ si(x) for all (Θ, x) ∈ B(0, R)× Ω and i = 1, 2.

Proof. Consider a triple (vΘ,ψΘ, ηΘ) ∈ Cm, where Cm is the set of unconstrained neural network
functions, cf. (4.1). We begin by considering the map F : Rm×Ω→ R, given by F (Θ, x) := vΘ(x).
Under Assumption 4.1, namely that vΘ possesses Lipschitz continuous activation functions, it fol-
lows that F itself is Lipschitz continuous. Consequently, F is bounded on B(0, R) × Ω, and
its (weak) derivatives are likewise essentially bounded on this domain. Analogously, introduc-
ing G : Rm × Ω → Rm via G (Θ, x) := ψΘ(x), we deduce that G exhibits the same bounded-
ness properties, with essentially bounded derivatives over B(0, R) × Ω. Furthermore, considering
H : Rm×Ω→ R given by H (Θ, x) := divψΘ(x)+a(ηΘ(x)), the condition on ηΘ from Assumption
4.1 yields its essential boundedness on B(0, R)× Ω.

The function G4 can be constructed using F and G . Given that d∂Ω is a surrogate distance
function and a is Lipschitz continuous, we immediately deduce the essential boundedness of G4 on
B(0, R) × Ω. Similarly, because G3(Θ, x) = H (Θ, x)d∂Ω(x)a(F (Θ, x)), the boundedness of G3

over the same domain follows.

Next, the relation G1(Θ, x) = |H (Θ, x) + f(x)|2 yields the estimate

G1(Θ, x) ≤ 2|H (Θ, x)|2 + 2|f(x)|2 ≤ 2M + 2|f(x)|2 =: s1(x),

for some constant M > 0. Thus, the inclusion s1 ∈ L1(Ω) follows from our assumption f ∈ L2(Ω).
A similar argument allows us to conclude that there exists s2 ∈ L1(Ω) satisfying G2(Θ, x) ≤ s2(x)
for all (Θ, x) ∈ B(0, R)× Ω. �

Our goal is to approximate the minimizer p0 of L in KW , which corresponds to the solution
of the obstacle problem, using minimizers of the same functional over the set of admissible neural
network functions Wm. However, in practice, the exact evaluation of L(pΘ) is unattainable due
to the reliance on numerical integration. Consequently, instead of approximating p0 through the
minimizers of L in Wm, the following lemma targets accounting for the error introduced in the
computation of the neural network minimizers.

Lemma 4.2 (approximation with Wm). For every m ∈ N, we define the set of neural network
quasi-minimizers

Im := {pΘm
∈Wm : L(pΘm

) ≤ L(pΘ) + 1/m ∀pΘ ∈Wm}.

Then, under Assumption 4.1, if p0 ∈ KW is the unique minimizer of L in KW , we have

sup
pΘm∈Im

‖pΘm
− p0‖W → 0 as m→∞.

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 11

Proof. Let pΘ ∈Wm be arbitrary and p0 ∈ KW be the minimizer of L. From Propositions 2.1 and
2.2, we have

(4.6) α‖pΘ − p0‖2W ≤ L(pΘ; f, g) ≤ β(1 + ‖pΘ − p0‖W) ‖pΘ − p0‖W
for some positive constants α, β.

Let ε > 0. By assumption (H1), we consider m0 > 0 such that d(p0,Wm) < ε and 1/m < ε for all
m > m0. For every m > m0, there exists pΘ∗ ∈ Wm with d(p0,Wm) ≥ ‖pΘ∗ − p0‖W − ε, namely,
‖pΘ∗ − p0‖W < 2ε. Then, for all m > m0 and every neural network quasi-minimizer pΘm

∈ Im,
we combine the bounds in (4.6) to obtain

α‖pΘm
− p0‖2W ≤ L(pΘm

; f, g)

≤ L(pΘ∗ ; f, g) + ε ≤ β(1 + ‖pΘ∗ − p0‖W) ‖pΘ∗ − p0‖W + ε < 2β(1 + 2ε)ε+ ε.

We have thus shown that for every ε > 0 there exists m0 > 0 such that, for all m > m0, if pΘm
∈ Im

then

‖pΘm
− p0‖W ≤ C

√
ε,

and thereby the proof is concluded. �

The previous result is of theoretical interest, as it involves the continuous functional L. In
practice, we shall make use of Monte Carlo integration and deal instead with a regularized version
of (4.4). More precisely, let {Xi}i∈N be an i.i.d. sequence of random variables on a probability
space (Ξ,Σ, P) with Xi : Ξ → Ω ∀i ∈ N, with a uniform probability density on Ω. Given ξ ∈ Ξ,
R > 0 as in (4.3), and N ∈ N we set VN (ξ) := ∪i≤N{Xi(ξ)}, and introduce the regularized discrete

functional Lξ,N : Rm → R,

(4.7) Lξ,N (Θ) :=


|Ω|
N

∑
x∈VN (ξ)

4∑
i=1

Gi(Θ, x) if |Θ| ≤ R,

+∞ otherwise,

where G1, . . . , G4 are given by (4.5).

We aim to prove the almost sure Γ-convergence of the sequence of functionals {Lξ,N}N∈N towards
L as the number of quadrature points N tends to infinity. An auxiliary tool for this purpose is the
fact that such a convergence holds in a pointwise sense.

Lemma 4.3 (almost sure pointwise convergence). Let R > 0, and L be defined by (4.3). Addition-
ally, as in (4.7), consider the functional Lξ,N and {Xi}i∈N an i.i.d. family of random variables on
the probability space (Ξ,Σ, P). Then, for all Θ ∈ Rm, it holds that Lξ,N (Θ) → L(Θ) as N → ∞
P -almost surely.

Proof. Because the parameter R > 0 in the definitions of of L and Lξ,N is the same, we have
L(Θ) = Lξ,N (Θ) = +∞ whenever |Θ| > R. Therefore, there is nothing to be proven in that case
and we can assume |Θ| ≤ R. Recalling VN (ξ) = ∪i≤N{Xi(ξ)} with ξ ∈ Ξ, an application of the
strong law of the large numbers gives

|Ω|
N

∑
x∈VN (ξ)

Gi(Θ, x)
a.s.−−−−→
N→∞

∫
Ω

Gi(Θ, x) dx.

The claim follows immediately. �

12 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

According to Definition 4.1, to prove the almost sure Γ-convergence of {Lξ,N} towards L as
N → ∞, it suffices to show that, for every Θ ∈ Rm, the lim-inf inequality holds and that one can
construct a recovery sequence satisfying the lim-sup inequality. Our argument follows the same
steps as in [6, Theorem 3.2]; we outline the proof for clarity.

Theorem 4.2 (almost sure Γ-convergence). Let R > 0, L be as in (4.3), and Lξ,N and {Xi}i∈N
be an i.i.d. family of random variables defined in the probability space (Ξ,Σ, P) as in (4.7). Then,

under Assumption 4.1, it holds that Lξ,N
Γ−→ L as N →∞ P -almost surely.

Proof. Given Θ ∈ Rm, we consider the trivial recovery sequence {ΘN}N∈N ⊂ Rm, ΘN ≡ Θ. Then,
Lemma 4.3 yields the P -almost sure lim-sup inequality.

As for the lim-inf inequality, we first observe that, by hypothesis (H2), if ΘN → Θ then pΘN
→

pΘ in the norm ‖ · ‖W . This, combined with the Poincaré inequality and the boundedness of Ω,
implies Gi(ΘN , x) → Gi(Θ, x) almost everywhere (up to a subsequence) in Ω (i ∈ {1, . . . , 4}) for
the functions defined in (4.5). Additionally, from Lemma 4.1, we can bound Gi(ΘN , x) ≤ si(x), for
some si ∈ L1(Ω), i ∈ {1, . . . , 4}. By combining this with Lemma 4.3, we can readily reproduce the
arguments presented in [6, Theorem 3.2]. �

Finally, we can combine the previous Γ-convergence result with a suitable form of equi-coercivity
to conclude the convergence of minimizers. We emphasize that the following theorem does not
assume that one is able to compute the minimum of the discrete loss functional, but instead that
one can asymptotically recover such a minimizer as the number of quadrature points tends to
infinity.

Theorem 4.3 (convergence). Let Assumption 4.1 hold and, moreover, assume that, given m ∈ N
and R > 0, we can construct a sequence {ΘN}N∈N ⊂ B(0, R) ⊂ Rm such that limN→∞ Lξ,N (ΘN) =
limN→∞ infΘ∈Rm Lξ,N (Θ), with Lξ,N defined as in (4.7). Let p0 = arg minp∈KW L(p). Then, for
every ε > 0, there P -almost surely exist m0 = m0(ε) ∈ N, R = R(m0) > 0 and N0 = N0(m0) ∈ N
such that, if one constructs a sequence {ΘN}N∈N as above, then

‖pN − p0‖W ≤ ε for all N > N0,

where pN := (uΘN
,φΘN

, γΘN
) ∈ Wm0 is the neural network function defined by the parameters

ΘN .

Proof. Given ε > 0, we consider the set of neural network quasi-minimizers introduced in Lemma
4.2, Im = {pΘm

∈Wm : L(pΘm
) ≤ L(pΘ)+1/m ∀pΘ ∈Wm}. By that lemma, there exists m0 > 0

such that

(4.8) ‖p0 − pΘm0
‖W < ε/2 for all pΘm0

∈ Im0 .

Next, we fix R0 > 0 large enough so that there exists a quasi-minimizer pΘ∗ ∈ Im0
with Θ∗ ∈

B(0, R0). Because the functional L defined in (4.3) coincides with L over B(0, R0), the reasoning
above implies that pΘm0

∈ Im0 for all Θm0 ∈ arg minΘ∈B(0,R0) L(Θ).

For this choice of m0 and R0, from Theorem 4.2 we have Lξ,N
Γ−→ L P -almost surely as N →∞.

From the definition (4.7) of Lξ,N : Rm0 → R, it follows immediately that {Lξ,N}N∈N is an equi-
coercive sequence, according to Definition 4.2.

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 13

Therefore, using Theorem 4.1 together with the fact that every cluster point in {ΘN} is a
minimum point for L and the continuity of the map Θ 7→ pΘ, we deduce that P -almost surely there
exists N0 > 0 such that

(4.9) ‖pN − pm0
‖W < ε/2

for all N > N0 for some pΘm0
∈ Im0

.

The proof concludes by combining (4.8) and (4.9). �

4.3. Approximation properties of neural networks. The convergence results from the previ-
ous section are based on the four conditions from Assumption 4.1. The first two conditions therein
are structural, in the sense that they involve either the problem data or choices about the neural
network activation and auxiliary functions. In contrast, the latter two express properties of the
neural networks in either terms of approximation capabilities or their stability.

In this section, we show certain constructions of the set Wm that satisfy the structural condition
2) from Assumption 4.1 and, for them, we prove that hypotheses (H1) and (H2) hold.

4.3.1. A first example. For the sake of clarity, we shall restrict our analysis to fully-connected,
feedforward neural networks having one hidden layer with n neurons. Accordingly, we consider the
following set of unconstrained neural network functions,

(4.10) Cm :=
{

(vΘ,ψΘ, ηΘ) : vΘ = Bvσ(Avx+cv), ψΘ = Bψσ(Aψx+cψ), ηΘ = Bησ(Aηx+cη)
}
.

Above Av, Aψ, Aη ∈ Rn×d, cv, cψ, cη ∈ Rn×1, Bv, Bη ∈ R1×n, Bψ ∈ Rd×n, and σ : Rn → Rn, and
σ a Lipschitz continuous, non-polynomial activation function, applied coordinate-wise. We gather
all parameters in Θ ∈ Rm, where m = n(4d + 5). Note that, in this setting, stating m → ∞ is
equivalent to expressing that the number of neurons n increases without bound. Furthermore, in
this section we shall operate either under the choice

(4.11) a(t) := ReLU(t) = max{0, t}.

The approximation properties of our spaces are proved in Proposition 4.2 below. Before address-
ing this issue, we note that the strong imposition of the homogenous boundary condition in (3.2),
calls for an appropriate understanding of the space to which the function u−g

dΩ
belongs. This is the

purpose of the following definition and the subsequent two lemmas; we point out that the Lipschitz
condition on Ω introduced in Assumption 4.1 is instrumental for the validity of our discussion.

Definition 4.3 (weighted L2 space). Let d∂Ω be a surrogate distance function (Definition 3.1).
For α ≥ 0, we introduce the weighted L2 space

L2(Ω, α) := {w : dα∂Ωw ∈ L2(Ω)},
equipped with the norm ‖w‖L2(Ω,α) := ‖dα∂Ωw‖ and its Sobolev extension

H1(Ω, α, β) := {w ∈ L2(Ω, α) : ∇w ∈ L2(Ω, β)},
with the induced norm ‖w‖H1(Ω,α,β) := ‖w‖L2(Ω,α) + ‖∇w‖L2(Ω,β).

It is clear that the definition above is not dependent on the particular choice of d∂Ω, as all
resulting spaces turn out to be equivalent. The following result is implicitly given in [25] but not
stated in the form needed in this article. For completeness, we outline the proof.

Lemma 4.4 (density). The set C∞(Ω) is dense in H1(Ω, 0, 1).

14 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

Proof. Taking k = 1, ε = 2 and p = 2, in [25, Proposition 9.6], we first note that H1(Ω, 0, 1) =

H1(Ω, 1, 1). Combining this with the identity C∞(Ω)
‖·‖H1(Ω,1,1)

= H1(Ω, 1, 1) shown in [25, Theo-
rem 7.2], we deduce the claimed density. �

Lemma 4.5 (embedding). For all w ∈ H1
0 (Ω), it holds that w/d∂Ω ∈ H1(Ω, 0, 1) and

‖w/d∂Ω‖H1(Ω,0,1) ≤ C‖w‖H1
0 (Ω)

with a constant depending on Ω and the choice of d∂Ω.

Proof. Let w ∈ H1
0 (Ω). On the one hand, Hardy’s inequality readily gives

(4.12) ‖w/d∂Ω‖2 ≤ C(Ω)‖∇w‖2.

On the other hand,

‖d∂Ω∇
(
w/d∂Ω

)
‖2 =

∫
Ω

d2
∂Ω

(
∇w
d∂Ω
− w∇d∂Ω

d2
∂Ω

)2

≤ 2

∫
Ω

|∇w|2 +
w2|∇d∂Ω|2

d2
∂Ω

≤ C(Ω, ‖∇d∂Ω‖L∞(Ω))‖∇w‖2,
where the last inequality follows from (4.12) and the uniform boundedness of |∇d∂Ω|. �

Our choice of a in (4.11) gives rise to the following well-known result. While its proof is standard,
we include it here for completeness.

Lemma 4.6 (convergence of composition). Let a be given by (4.11) and let β ≥ 0. If wm → w in
H1(Ω, 0, β), then a(wm)→ a(w) in H1(Ω, 0, β).

Proof. By the Lipschitz continuity of a, it is easy to observe that a(wm)→ a(w) in L2(Ω):

‖a(wm)− a(w)‖L2(Ω) ≤ ‖wm − w‖L2(Ω).

To prove the convergence of the gradients, we note ∇(a(w)) = χ{w>0}∇w and write

(4.13) ∇(a(wm))−∇(a(w)) = χ{wm>0}∇(wm − w) +
(
χ{wm>0} − χ{w>0}

)
∇w.

It is clear that the first term tends to 0 in L2(Ω, β):∫
Ω

|χ{wm>0}∇(wm − w)|2d2β
∂Ω ≤

∫
Ω

|∇(wm − w)|2d2β
∂Ω → 0.

For the second term in (4.13), since ∇w = 0 a.e. on the set {w = 0}, we can write∫
Ω

∣∣χ{wm>0} − χ{w>0}
∣∣ |∇w|2d2β

∂Ω =

∫
{w 6=0}

∣∣χ{wm>0} − χ{w>0}
∣∣ |∇w|2d2β

∂Ω.

Over the set {w 6= 0} and up to a subsequence, we have wm → w a.e., and by the continuity of
a′(t) = χ{t>0} for t 6= 0, we deduce χ{wm>0} → χ{w>0} a.e. on {w 6= 0}. Since the integrand

is bounded by |∇w|2d2β
∂Ω ∈ L1(Ω), we can therefore apply the dominated convergence theorem to

conclude that ∫
Ω

∣∣χ{wm>0} − χ{w>0}
∣∣ |∇w|2d2β

∂Ω → 0.

�

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 15

We have collected all the ingredients to show that the choice (4.10)–(4.11) gives rise to property
(H1).

Proposition 4.1 (approximation). Let the structural condition 1) in Assumption 4.1 hold, and the
neural network classes be constructed according to (4.2) by using (4.10) and (4.11). Then, for all
p ∈ KW , we have d(p,Wm)→ 0 as m→∞; in particular, (H1) holds.

Proof. First, we recall that the desired approximation property is expressed with respect to the

norm ‖ · ‖W , given by ‖(u,φ, γ)‖W =
(
‖∇u‖2 + ‖φ‖2 + ‖γ‖2

)1/2
.

Let p = (u,φ, γ) ∈ KW . Since u − g ∈ H1
0 (Ω), Lemma 4.5 yields (u − g)/d∂Ω ∈ H1(Ω, 0, 1).

Thanks to Lemma 4.4, using classical results on H1 approximation [29, Section 6], along with the
fact that ‖ · ‖H1(Ω,0,1) ≤ C(Ω)‖ · ‖H1(Ω), we can ensure the existence of a sequence of weights
{Θm

v }m∈N such that ‖(u − g)/d∂Ω − vΘm
v
‖H1(Ω,0,1) → 0 as m → ∞. By Lemma 4.6, we deduce

a(vΘm
v

) → a ((u− g)/d∂Ω) in H1(Ω, 0, 1). But, as (u − g)/d∂Ω ≥ 0 it follows that a(wm) →
(u−g)/d∂Ω in H1(Ω, 0, 1). Thus, we can guarantee the existence of a sequence {Θm

v }m∈N such that

(4.14) ‖(u− g)/d∂Ω − a(vΘm
v

)‖H1(Ω,0,1) → 0 as m→∞.

We now aim to prove that ‖∇
(
u− g − d∂Ωa(vΘm

v
)
)
‖ → 0 as m→∞. To this end, we write

∇
(
u− g − d∂Ωa(vΘm

v
)
)

= ∇d∂Ω

(
(u− g)/d∂Ω − a(vΘm

v
)
)

+ d∂Ω∇
(
(u− g)/d∂Ω − a(vΘm

v
)
)
,

so that

‖∇
(
u− g − d∂Ωa(vΘm

v
)
)
‖ ≤ ‖∇d∂Ω

(
(u− g)/d∂Ω − a(vΘm

v
)
)
‖+ ‖d∂Ω∇

(
(u− g)/d∂Ω − a(vΘm

v
)
)
‖

≤ C‖(u− g)/d∂Ω − a(vΘm
v

)‖H1(Ω,0,1),

with a constant C > 0 depending on ‖∇d∂Ω‖L∞(Ω). Using (4.14), we deduce that

‖∇
(
u− g − d∂Ωa(vΘm

v
)
)
‖ → 0 as m→∞,

which, naming uΘm
v

:= g + d∂Ωa(vΘm
v

) according to (4.2), yields uΘm
v
→ u in H1

0 (Ω).

Following similar but simpler arguments, we construct the sequences {Θm
ψ }m∈N and {Θm

η }m∈N
such that ψΘm

ψ
→ φ in H1(Ω;Rd) and ηΘm

η
→ γ − divφ in L2(Ω). Clearly, the former yields

‖φ−ψΘm
ψ
‖ → 0 and ‖divφ− divψΘm

ψ
‖ → 0 as m→∞. Furthermore, we can estimate

(4.15) ‖γ − divψΘm
ψ
− a(ηΘm

η
)‖ ≤ ‖γ − divφ− a(ηΘm

η
)‖+ ‖ divφ− divψΘm

ψ
‖.

Since p = (u,φ, γ) ∈ KW , we have γ − divφ ≥ 0. Additionally, as a(t) = max{0, t}, and
ηΘm

η
→ γ − divφ in L2(Ω), we deduce that ‖γ − divφ− a(ηΘm

η
)‖ → 0 as m→∞. Combining this

with estimate (4.15), we conclude that ‖γ − divψΘm
ψ
− a(ηΘm

η
)‖ → 0.

By taking {Θm}m∈N = {(Θm
v ,Θ

m
ψ ,Θ

m
η)}m∈N and defining

pΘm :=
(
g + d∂Ωa(vΘm

v
),ψΘm

ψ
,divψΘm

ψ
+ ηΘm

η

)
,

we find that pΘm ∈Wm for all m ∈ N and pΘm → p as m→∞ in W. �

Next, we show the validity of (H2).

Proposition 4.2 (continuity). Let the neural network classes be constructed according to (4.2)
by using (4.10) and (4.11) and R > 0 be given according to (4.3). Then, (H2) holds: the map

B(0, R)→Wm, Θ 7→ pΘ is continuous.

16 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

Proof. We recall that functions in Wm are constructed from neural network functions in Cm by
(4.2),

uΘ = g + d∂Ωa(vΘ), φΘ = ψΘ, γΘ = divψΘ + a(ηΘ), (vΘ,ψΘ, ηΘ) ∈ Cm,

and that Wm is equipped from the topology from H1
0 (Ω)× L2(Ω; Rd)× L2(Ω).

Our choice of Cm in (4.10) readily implies that the map Θ 7→ (vΘ,ψΘ, ηΘ) is continuous with
respect to the W 1,∞(Ω) ×W 1,∞(Ω;Rd) ×W 1,∞(Ω) norm. This readily implies the continuity of
the map Θ 7→ φΘ with respect to the L2(Ω;Rd) norm. Furthermore, by applying Lemma 4.6, the
continuity of the map Θ 7→ γΘ with respect to the L2(Ω) norm is straightforward.

Finally, proving the continuity of the map Θ 7→ uΘ in H1
0 (Ω) requires showing the continuity of

the correspondence Θ→ ∇(d∂Ω(a(vΘ))) in L2(Ω;Rd). This, in turn, can be proven by splitting

∇(d∂Ω(a(vΘ))) = ∇d∂Ω a(vΘ) + d∂Ω∇a(vΘ),

using the uniform boundedness of d∂Ω and ∇d∂Ω, and Lemma 4.6. �

4.3.2. A second example. In proving Proposition 4.2, we relied on classical neural network approx-
imation properties in the H1 norm, though only L2 approximation properties were essential for
the term ηΘ; similarly, the continuity of the map Θ 7→ ηΘ we showed in Proposition 4.2 is only
needed with respect to the L2 norm. Thus, as ηΘ involves no differential operator, its architecture
necessitates only L2 stability and approximation capabilities.

We now focus on the specific construction of the neural network to compute the function ηΘ,
which we recall gives rise to the approximation of the Lagrange multiplier λ in the least squares
functional (2.5) through the relation λ = a(η)−divφ. More precisely, the remainder of this section
provides an analysis of L2 approximation properties and stability –in the sense of hypotheses (H1)
and (H2), respectively– of a certain class of Deep Neural Networks (DNN) that we use in our
numerical experiments.

Regarding the approximation property (H1), our proof proceeds in an indirect way by showing
that the network is capable of generating the space of piecewise constants finite elements. This, in
turn, yields, as a by-product, the L2 approximation property we need. There are several by now
classical results [11, 21, 3] regarding the approximation properties of neural networks, although
without the incorporation of boundary conditions. We additionally point out to [13, 19, 20, 37] for
recent results concerning upper and lower bounds for the expressive power of deep ReLU networks
in the context of approximation in Sobolev spaces. References [20, 1] establish the capability of
networks to represent simplicial linear finite element functions, which possess good approximation
properties in the H1-norm. In [1], it is shown that at the expense of a large enough number of
neurons, any continuous piecewise linear function in Rd can be written by using at most dlog2(d+1)e
hidden layers. In [19], on the other hand, piecewise linear finite element basis are explicitly written
in terms of ReLU DNN functions with a cost proportional to dlog2(κh)e, being κh the maximum
number of elements sharing a nodal point. This, in turn, gives a representation of arbitrary linear
finite element functions on regular meshes with an overall cost proportional to the number of nodal
points. Moreover, in [20], the article [37] is read in the context of hierarchical finite elements and
the authors show, in particular, that finite element basis in 2d can be recovered by means of only
two hidden layers.

We introduce a type of DNN that can be regarded as a ReLU DNN in which the first activation
function is replaced by a step function σs (i.e. σs = H is the Heaviside function). Namely, functions

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 17

in this particular kind of hybrid network, which hereafter we denote by HNNk, are written as

f(x) = Θk ◦ σ ◦Θk−1 ◦ σ · · · ◦Θ1 ◦ σs ◦Θ0(x).

Here, Θj : Rnj → Rnj+1 , are affine mappings and each activation function is applied componentwise.
In the neural network jargon, the number w = max1≤i≤k{ni} is usually referred to as the width of
the network, the total number of neurons s =

∑
0≤i≤k ni is called the neural network size, and the

number of hidden layers is k. In our case, Rn0 = Rd and Rnk+1 = R.

Despite possessing good approximation properties, function spaces defined by neural networks
with piecewise constant activations pose a significant optimization challenge. Standard gradient-
based algorithms fail because the activation derivatives are zero almost everywhere. To circumvent
this issue, we employ a variant of the Straight-Through Estimator (STE), a common heuristic for
training such networks [22]. We elaborate on the implementation of this approach in Section 5.

Next we show, by means of elementary arguments, that for k ≥ dlog2(d + 1)e, the set HNNk

contains a space of piecewise constant functions in Rd, a result that, we believe, could be of interest
in itself. Given a bounded, Lipschitz domain Ω ⊂ Rd, we consider a partition T of Ω by means of
closed convex polytopes, with the property

Ω =
⋃
τ∈Th

τ, τ̃o ∩ τo = ∅ for all τ̃ , τ ∈ T with τ̃ 6= τ.

We are interested in exploiting the relation to standard finite element spaces with piecewise constant
functions, in particular their ability to approximate functions in L2 spaces. Thus, in the sequel we
assume that each τ –which we will refer to as an element– is a simplex in Rd, namely the convex
hull of d+ 1 non collinear points {v0, v1, · · · , vd}, called henceforth the vertices of τ ; nevertheless,
our argument holds for any polytopal partition of Ω.

Following standard finite element notation, we denote the size of an element by hτ = diam(τ),
while h = maxτ∈T hτ stands for the maximum element size in the triangulation T . Given Ω and
T , the space P0 consists of functions that take a constant value on each τ ∈ T . In particular, here
we assume that these functions are defined in Rd considering their extension by zero outside Ω.

Proposition 4.3 (recovering characteristics). Let d ≥ 1 and τ a simplex in Rd. Then, the charac-
teristic function χτ of τ can be written by means of an HNNk with k ∼ O(dlog2(d + 1)e) and size
s ∼ O(2(d+ 1)).

Proof. For d = 1 we write τ = [v0, v1], where we can assume v0 < v1. Obviously, χτ (x) =
H(x − v0) − H(x − v1) where H is the Heaviside function and then χτ ∈ HNN1. Next, we focus
on the case d = 2, since for an arbitrary spatial dimension d the argument is the same. Let τ be a
triangle of vertices {v0, v1, v2}. We call Li the line joining vi and vi+1 (indices modulo 3) and φi
a linear function φi : R2 → R such that Li = {x : φi(x) = 0}; we may assume that φi(x) > 0 in
the interior of τ . We consider µi = H ◦ φi and notice that, by construction, µi(x) = 1 for x ∈ τ
and i = 0, 1, 2, while if x /∈ τ then there exists j ∈ {0, 1, 2} such that µj(x) = 0. Therefore, we can
write

χτ (x) = min
0≤i≤2

{µi(x)}.

Now, following [20], we use the fact that

min{a, b} =
a+ b

2
− |a− b|

2
= v · ReLU

(
W

[
a
b

])
,

18 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

where

v =
1

2

[
1 −1 −1 −1

]
, W =


1 1
−1 −1
1 −1
−1 1

 .
Since

min{µ0(x), µ1(x), µ2(x)} = min{µ0(x),min{µ1(x), µ2(x)}},
we immediately observe that

χτ (x) = v · ReLU

W
 µ0(x)

v · ReLU

(
W

[
µ1(x)
µ2(x)

]) ∈ HNN3.

For a general dimension d ≥ 3, the argument follows along the same lines by noticing that

min{µ0(x), µ1(x), . . . , µd(x)} = min
{

min{µ0(x) . . . , µb(d+1)/2c−1(x)},min{µb(d+1)/2c(x) . . . , µd(x)}
}

and iterating the previous procedure. This construction gives rise to a binary tree with total size
s ∼ 2log2(d+1)+1. �

Remark 1. A well-known result [29, Section 7], which is similar to Proposition 4.3, is that the
characteristic function of any convex polytope can be represented by a two-hidden-layer network
using the Heaviside function as an activation function.

For a given triangulation T , the dimension of the space of piecewise constant functions associated
to it has the same cardinality as T . Thus, we arrive to the following result.

Corollary 4.1 (recovering piecewise constant functions). Assume Ω ⊂ Rd is a bounded polytope,
and let T be a triangulation of Ω with N := #T . Then, the space of piecewise constant functions
on τ can be generated by an HNNk with k ∼ (dlog2(d+ 1)e) and size s ∼ 2N(d+ 1).

Since the space of piecewise constant functions on a triangulation of Ω is capable of approximation
in the L2-norm, we conclude that (H1) remains valid if we use HNNk networks for the computation
of the variable η.

Corollary 4.2 (approximation with HNNk). Assume Ω ⊂ Rd is a bounded polytope. Given η ∈
L2(Ω) and k ∼ (dlog2(d+ 1)e), it holds that

lim
s→∞

inf
ηΘ∈HNNk

‖η − ηΘ‖ = 0.

Our next goal is to show that the class HNNk also allows to recover hypothesis (H2): we prove
the almost everywhere continuity of elements belonging to HNNk, in the L2 norm, with respect to
the network parameters. In order to state the next result, we introduce the following notation: for
each element Θ = (a, b) ∈ Rd × R, we define fΘ : Ω→ R by

fΘ(x) := H(a · x+ b),

with H the Heaviside function. We notice that if a = 0 then fΘ(x) degenerates to a constant.

Lemma 4.7 (nondegeneracy). Let Ω ⊂ Rd be a domain of finite measure, then

1. for any Θ0 = (a0, b0) with a0 6= 0 and any sequence {Θn}n∈N = {(an, bn)}n∈N converging to
Θ0, fΘn → fΘ0 almost everywhere in Ω;

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 19

2. if, in addition, Ω is bounded, then for any degenerate parameter Θ0 = (0, b0) there exists a
non-degenerate Θ′ = (a′, b′) (i.e. with a′ 6= 0) such that fΘ0 ≡ fΘ′ in Ω.

Proof. We first prove 1. Assuming a0 6= 0, we decompose Ω into three disjoint measurable sets:

Π0 := {x ∈ Ω : a0 · x+ b0 = 0},
Π+ := {x ∈ Ω : a0 · x+ b0 > 0},
Π− := {x ∈ Ω : a0 · x+ b0 < 0},

yielding the partition Ω = Π0 ∪ Π+ ∪ Π− into disjoint sets. The non-degeneracy condition a0 6= 0
ensures that Π0 is contained in an affine hyperplane, and therefore has d-dimensional Lebesgue
measure zero.

For each x ∈ Π+, the strict positivity a0 · x + b0 > 0 implies, by continuity of the inner
product, that there exists Nx ∈ N such that an · x + bn > 0 for all n ≥ Nx. Consequently,
fΘn

(x) = H(an · x + bn) → 1 = fΘ0
(x) for all x ∈ Π+. An identical argument shows that

fΘn
(x) → 0 = fΘ0

(x) for all x ∈ Π−. Since Π0 is a null set and the convergence holds pointwise
on Π+ ∪ Π−, we conclude that fΘn

→ fΘ0
almost everywhere in Ω with respect to the Lebesgue

measure.

Consider now 2. In this case, Θ0 = (0, b0). Without loss of generality, we may assume b0 ≥ 0,
which immediately gives fΘ0 ≡ 1 over Ω. Since Ω is bounded, we can construct an explicit non-
degenerate counterpart Θ′ = (1, b′) by choosing 1 = (1, . . . , 1) ∈ Rd and b′ > supx∈Ω ‖1 · x‖L∞(Ω).
This guarantees the strict positivity

1 · x+ b′ > 0 for all x ∈ Ω,

and consequently fΘ′ ≡ 1. Thus, the equivalence fΘ0
≡ fΘ′ holds in Ω. �

The next theorem establishes the L2-continuity of any HNNk-type neural network with respect
to the parameters.

Theorem 4.4 (almost everywhere continuity). Consider a sequence {Θn}n∈N ⊂ Rm converging to
some Θ0 ∈ Rm, where vΘn and vΘ0 are HNNk-type neural networks parameterized by Θn and Θ0,
respectively. For any domain Ω ⊂ Rd with finite measure, there exists a set N ⊂ Rm such that:

1. if Θ0 /∈ N , then vΘn → vΘ0 in L2(Ω);
2. if Ω is bounded, each Θ ∈ N admits Θ′ /∈ N satisfying vΘ ≡ vΘ′ in Ω.

Moreover, N is a finite union of subspaces of Rm, each one of dimension m − d (in particular N
is a null set with respect to the Lebesgue measure).

Proof. For any Θ ∈ Rm, let lΘ : Ω → R` denote the first layer of an HNNk-type neural network,
namely

lΘ(x) :=
(
H(a1 · x+ b1), . . . ,H(a` · x+ b`)

)
,

where ai ∈ Rd and bi ∈ R for i = 1, . . . , `. For 1 ≤ i ≤ `, consider the sets of singular parameters,

Ni := {Θ ∈ Rm : ai = 0}.
We note that each Ni is a proper affine subspace of dimension m− d and define

N :=
⋃̀
i=1

Ni.

20 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

For Θ0 ∈ Rm \ N , Lemma 4.7 guarantees the componentwise convergence lΘn(x) → lΘ0(x)
for almost every x ∈ Ω. As the remaining layers of the HNNk architecture consist of continuous
activation functions, the almost everywhere convergence is preserved, that is

(4.16) vΘn
(x)→ vΘ0

(x) for a.e. x ∈ Ω.

With the same procedure as in the proof of Lemma 4.1, we first establish the uniform boundedness
property

sup
‖Θ‖≤R

‖vΘ‖L∞(Ω) <∞ for any R > 0.

Now, if Θn → Θ0, consider the compact parameter set {Θ0} ∪ {Θn}n∈N, and let R denote its
radius. The preceding estimate yields a uniform bound M > 0 satisfying

max

(
‖vΘ0

‖L∞(Ω), sup
n∈N
‖vΘn

‖L∞(Ω)

)
≤M.

Since Ω has finite measure, the constant function M is integrable and therefore, formula (4.16)
together with the dominated convergence theorem yield

lim
n→∞

‖vΘn
− vΘ0

‖ = 0,

and the first assertion of this theorem follows.

When Ω is bounded, any parameter Θ ∈ N must satisfy ai = 0 for some non-empty subset of
indices I ⊆ {1, . . . , `}. Through Lemma 4.7, we may construct modified parameters by replacing
each zero-weight pair (ai, bi)i∈I with non-degenerate alternatives (a′i, b

′
i)i∈I , where a′i 6= 0, to a

new parameter Θ′. This construction preserves the layer mapping exactly:

lΘ(x) = lΘ′(x) ∀x ∈ Ω.

Consequently, the full network implementations coincide:

vΘ(x) = vΘ′(x) ∀x ∈ Ω,

with the key property that Θ′ /∈ N avoids the singular set entirely. �

Remark 2. Theorem 4.4 establishes that the mapping Θ 7→ ηΘ is continuous almost everywhere
in the parameter space. This result yields two key consequences for networks with step activation
functions:

(1) Hypothesis (H2) holds for almost every parameter configuration Θ ∈ Rm;
(2) Restricting to parameters within the continuity set does not compromise the expressive

capacity of the architecture, as each realizable function ηΘ admits an equivalent represen-
tation ηΘ′ with Θ′ in the continuity set.

Notably, the second point guarantees the validity of hypothesis (H1) even when the parameter space
is restricted to exclude the negligible set of degenerated points.

Remark 3. While we stated Corollary 4.2 and Theorem 4.4 in the L2 norm, which is the one we are
interested in, it is clear that the same results are valid if one considers the Lp norm for an arbitrary
p ∈ [1,∞).

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 21

5. Computational experiments

In this section, we present numerical results for the method proposed in Section 3. We did not
prioritize any specific neural network architecture, employing two- and three-layer fully connected
networks with SoftPlus activation functions to construct uΘ and φΘ. For the construction of ηΘ,
we used one- to three-layer networks with ReLU or step activation functions. Networks with more
layers demonstrated better performance in high-dimensional problems. Across all experiments,
we utilized a(t) := t2, which has exhibited satisfactory performance. During training, the well-
known ADAM algorithm [24] was employed to update the parameters, with the initial learning rate
scheduled to decrease linearly to zero by the final iteration.

When step activation functions are used in the construction of ηΘ, gradient computation during
training relies on the Straight-Through Estimator [4]. In this approach, the derivative of the
Heaviside activation function, which vanishes almost everywhere, is replaced by the approximation
1
c I[0,c](x) for a prescribed parameter c > 0.

Although the convergence theory established in Section 4 employs the functional L, defined
in (2.7), our experiments show very similar results using both L and J , defined in (2.5). That
is, we interchangeably used the discrete versions of these functionals, with LN being the discrete
functional defined in (3.1), and JN being the discrete functional defined as follows:

JN (u,φ) :=
|Ω|
N

N∑
k=1

(
divφ(xk) + λ(xk) + f(xk)

)2
+
(
∇u(xk)− φ(xk)

)2
+ λ(xk)

(
u(xk)− g(xk)

)
.

For this functional, we can compute uΘ and φΘ as in (4.2), and we can simply use a(ηΘ) to
approximate λ.

The code used to implement the experiments in this section is available at https://github.

com/fbersetche/Deep-FOSLS-for-the-Obstacle-Problem-.

Example 5.1 (A high-dimensional problem). We consider the following high-dimensional instance of
problem (2.4). Let Ω = BR0(0) = {x ∈ Rd : |x| < R0} with R0 ∈ R>0, and let fd : R→ R be such
that −∆fd(|x|) = δ0, that is, the d-dimensional fundamental solution of the Laplace operator, as a
function of the radius, centered at x = 0. Let 0 < r0 < R0, and define the polynomial Q : R → R
as Q(r) = ar4 + br2 + c, with coefficients determined to satisfy the conditions

Q(r0) = fd(r0)− fd(R0), Q′(r0) = f ′d(r0), Q(R0) = 0.

By taking g : Rd → R as g(x) := Q(|x|), the solution to problem (2.4) is

u(x) =

{
Q(|x|) if |x| ≤ r0,

fd(|x|)− fd(R0) if r0 < |x| ≤ R0.

We first test our approach in a 10-dimensional domain (d = 10). Figure 5.1 displays the results
we obtained by constructing uΘ and φΘ using 3-layer neural networks with 100 SoftPlus activation
functions per layer, and a similar architecture for ηΘ, but using ReLU activation functions instead
of SoftPlus. The SoftPlus activation function was used with parameter β = 100. At the end of the
optimization algorithm, we computed the average value LN (Θ) = 5.193 and an average L2-error of
0.2705.

https://github.com/fbersetche/Deep-FOSLS-for-the-Obstacle-Problem-
https://github.com/fbersetche/Deep-FOSLS-for-the-Obstacle-Problem-

22 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

Figure 5.2 corresponds to d = 20, where we used the same architecture with 150 neurons per layer.
We observed fast convergence in the number of iterations, reaching an average LN (Θ) = 9702.4
and an average L2-error of 8.155 by the end of the minimization algorithm.

uΘ

∣∣
{x3,...,x10=0}. log(LN (Θ)) vs. iterations.

Exact solution u and obstacle g. log ‖uΘ − u‖ vs. iterations.

Figure 5.1. Top left: A slice of the computational solution uΘ to example (5.1)
in the case d = 10, r0 = 0.7, and R0 = 2. In the computation, we used a learning
rate ` = 0.001, with 20000 collocation points, 10000 optimization steps, and 65112
degrees of freedom. The bottom left panel exhibits the obstacle and the exact
solution as a function of r = |x|. We also report the evolution of the loss function
(top right) and the L2-error (bottom right). The L2-error was estimated using
Monte Carlo integration, with a sample of 40000 points.

Example 5.2 (A problem on a slit domain). We consider the non-Lipschitz domain Ω = B1(0) \
{0} × [0, 1], with f ≡ 0, and the a two-peak obstacle function g : Ω→ R,

g(x) = max{10e−30|x−(−0.4,−0.5)|2 − 1, 0}+ max{15e−30|x−(−0.4,0.5)|2 − 1, 0}.

Figures 5.3 and 5.4 exhibit our computed solutions for this instance of problem (2.4). In this case,
we observe a fast convergence towards the solution, reaching LN (Θ) = 42.46. We employed a two-
layer architecture with 150 neurons per layer and a Softplus activation function with parameter
β = 100 for both uΘ and φΘ. For ηΘ, we employ a piecewise constant architecture comprising a
three-layer HNN3, where the first and third layers use the ReLU activation function, and the second
layer adopts the step activation function (see Proposition 4.3). During training, the STE is used to
approximate the gradient with respect to the parameters of ηΘ by substituting the derivative of the
Heaviside activation functions with 1

c I[0,c](x), where c = 0.5. Our results indicate that the method

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 23

uΘ

∣∣
{x3,...,x20=0}. log(LN (Θ)) vs. iterations.

Exact solution u and obstacle g. log ‖uΘ − u‖ vs. iterations.

Figure 5.2. A slice of the computational solution uΘ (top left), evolution of
the loss function (top right), the exact solution and the obstacle as a function of
r = ‖x‖2 (bottom left), and evolution of the L2-error (bottom right) for (5.1) with
d = 20, r0 = 0.9, and R0 = 2. We used a learning rate ` = 0.001, with 20000
collocation points, 14000 optimization steps, and 148672 degrees of freedom.

performs robustly even on non-Lipschitz domains, which lie outside the scope of the theoretical
framework.

References

[1] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rectified linear units.
In International Conference on Learning Representations, 2018.

[2] H. E. Bahja, J. C. Hauffen, P. Jung, B. Bah, and I. Karambal. A physics-informed neural network framework

for modeling obstacle-related equations. arXiv preprint arXiv:2304.03552, 2023.
[3] A. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on

Information theory, 39(3):930–945, 1993.
[4] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic neurons

for conditional computation. In Proceedings of the 2nd International Conference on Learning Representations

(ICLR 2013), 2013.
[5] J. Berg and K. Nyström. A unified deep artificial neural network approach to partial differential equations in

complex geometries. Neurocomputing, 317:28–41, 2018.

[6] F. Bersetche and J. Borthagaray. A deep first-order system least squares method for solving elliptic PDEs.
Computers & Mathematics with Applications, 129:136–150, 2023.

[7] A. Braides. A handbook of Γ-convergence. In Handbook of Differential Equations: stationary partial differential

equations, volume 3, pages 101–213. Elsevier, 2006.

24 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

uΘ(x). log(LN (Θ)) vs. iterations.

The obstacle g(x). η2Θ(x).

Figure 5.3. Computational solution uΘ (top left), evolution of the loss function
(top right), the obstacle function g (bottom left), and the computed contact set η2

Θ

(bottom right). We used a learning rate ` = 0.001, with 4000 collocation points,
10000 optimization steps, and 66654 degrees of freedom. In this case, the surrogate
function d∂Ω(x) agrees with d(x, ∂Ω).

[8] X. Cheng, X. Shen, X. Wang, and K. Liang. A deep neural network-based method for solving obstacle problems.
Nonlinear Anal. Real World Appl., 72:103864, 2023.

[9] F. Chouly, P. Hild, and Y. Renard. Finite element approximation of contact and friction in elasticity. Springer,

2023.
[10] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

[11] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and

systems, 2(4):303–314, 1989.
[12] M. Darehmiraki. A deep learning approach for the obstacle problem. In Proceedings of Academia-Industry

Consortium for Data Science: AICDS 2020, pages 179–188. Springer, 2022.
[13] R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numer., 30:327–444, 2021.
[14] W. E and S. Wojtowytsch. Some observations on high-dimensional partial differential equations with Barron

data. In Mathematical and Scientific Machine Learning, pages 253–269. PMLR, 2022.

[15] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[16] T. Führer. First-order least-squares method for the obstacle problem. Numerische Mathematik, 144(1):55–88,
2020.

[17] R. Glowinski. Numerical methods for nonlinear variational problems. Springer Science & Business Media, 2013.
[18] C. He, X. Hu, and L. Mu. A mesh-free method using piecewise deep neural network for elliptic interface problems.

Journal of Computational and Applied Mathematics, 412:114358, 2022.

[19] J. He, L. Li, and J. Xu. ReLU deep neural networks from the hierarchical basis perspective. Comput. Math.

Appl., 120:105–114, 2022.

A DEEP LEAST-SQUARES METHOD FOR THE OBSTACLE PROBLEM 25

Figure 5.4. The computational solution uΘ (black wire-frame), and the obstacle
function g (gray), in Example 5.2.

[20] J. He, L. Li, J. Xu, and C. Zheng. Relu deep neural networks and linear finite elements. J. Comput. Math.,

38(3):502–527, 2020.
[21] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257, 1991.

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks: training neural

networks with low precision weights and activations. J. Mach. Learn. Res., 18:30, 2018. Id/No 187.
[23] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and their applications. SIAM,

2000.
[24] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In In Proceedings of the 3rd Internation-

alConference for Learning Representations—ICLR, pages 7–9, San Diego, CA, 2015.

[25] A. Kufner. Weighted Sobolev spaces. Licensed ed. A Wiley-Interscience Publication. Chichester etc.: John Wiley
& Sons. 116 p. £ 15.00 (1985)., 1985.

[26] M. Liu and Z. Cai. Adaptive two-layer ReLU neural network: II. Ritz approximation to elliptic PDEs. Comput.

Math. Appl., 113:103–116, 2022.
[27] M. Liu, Z. Cai, and J. Chen. Adaptive two-layer ReLU neural network: I. best least-squares approximation.

Comput. Math. Appl., 113:34–44, 2022.

[28] J. A. Opschoor, P. C. Petersen, and C. Schwab. First order system least squares neural networks. arXiv preprint
arXiv:2409.20264, 2024.

[29] A. Pinkus. Approximation theory of the MLP model in neural networks. In Acta Numerica Vol. 8, 1999, pages

143–195. Cambridge: Cambridge University Press, 1999.
[30] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework

for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys.,
378:686–707, 2019.

[31] J.-F. Rodrigues. Obstacle problems in mathematical physics. Elsevier, 1987.

[32] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations.
Journal of Computational Physics, 375:1339–1364, 2018.

[33] N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance functions in physics-

informed deep neural networks. Comput. Methods Appl. Mech. Eng, 389:114333, 2022.

26 G. ACOSTA, E. BELÉN, F.M. BERSETCHE, AND J.P. BORTHAGARAY

[34] R. Trémolieres, J.-L. Lions, and R. Glowinski. Numerical analysis of variational inequalities. Elsevier, 2011.
[35] S. Wojtowytsch and W. E. Can shallow neural networks beat the curse of dimensionality? A mean field training

perspective. IEEE Trans. Artif. Intell., 1(2):121–129, 2020.

[36] J. Xu. Finite neuron method and convergence analysis. Commun. Comput. Phys., 28:1707–1745, 2020.
[37] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114, 2017.

[38] X. E. Zhao, W. Hao, and B. Hu. Two neural-network-based methods for solving elliptic obstacle problems.
Chaos Solitons Fractals, 161:112313, 2022.

(G. Acosta) Departamento de Matemática, FCEyN, Universidad de Buenos Aires / IMAS, CONICET,

Buenos Aires, Argentina

Email address: gacosta@dm.uba.ar

(E. Belén) Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Ar-

gentina

Email address: beleneugenia.96@gmail.com

(F.M. Bersetche) Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires,
Argentina

Email address: fbersetche@dm.uba.ar

(J.P. Borthagaray) Instituto de Matemática y Estad́ıstica “Rafael Laguardia”, Facultad de Ingenieŕıa,

Universidad de la República, Montevideo, Uruguay

Email address: jpborthagaray@fing.edu.uy

	1. Introduction
	1.1. Related work
	1.2. Organization of the paper

	2. Variational Formulation and First-Order Reformulation
	3. Description of the method
	3.1. Strong imposition of boundary and admissibility conditions
	3.2. Computational aspects

	4. Convergence analysis
	4.1. -convergence
	4.2. Convergence of the method
	4.3. Approximation properties of neural networks

	5. Computational experiments
	References

