english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50855 Cómo citar
Título: Combined learning and optimal power flow for storage dispatch in grids with renewables.
Autor: Porteiro, Rodrigo
Paganini, Fernando
Bazerque, Juan Andrés
Tipo: Ponencia
Palabras clave: Energy storage, Power system optimization, Reinforcement learning
Fecha de publicación: 2024
Resumen: We propose an optimization and learning technique for controlling energy storage in power systems with renewables. A reinforcement learning (RL) approach is employed to bypass the need for an accurate stochastic dynamic model for wind and solar power; at the same time, the presence of the grid is explicitly accounted for through the “DC” approximation to the Optimal Power Flow (OPF) to impose line constraints. The key idea that allows the inclusion of such instantaneous constraints within the RL framework is to take as control actions the storage operational prices, which may be suitably discretized. A policy to select these actions as a function of the state is parameterized by a neural network model and trained based on traces of demand and renewables. We call this combined strategy RL-OPF. We test it on a trial network with real data records for demand and renewables, showing convergence to a control policy that induces arbitrage of energy across space and time.
EN: 2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19-22 feb. 2024, pp. 1-5.
Financiadores: ANII-Uruguay, Becas FSE 1 2019 1 159457 y FCE 1 2021 1 167301.
Citación: Porteiro, R., Paganini, F. y Bazerque, J. Combined learning and optimal power flow for storage dispatch in grids with renewables [en línea]. EN: 2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19-22 feb. 2024, pp. 1-5.
Departamento académico: Sistemas y Control
Licencia: Licencia Creative Commons Atribución (CC - By 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PPB24.pdfVersión final319,37 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons