english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/50855 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPorteiro, Rodrigo-
dc.contributor.authorPaganini, Fernando-
dc.contributor.authorBazerque, Juan Andrés-
dc.date.accessioned2025-08-01T17:31:07Z-
dc.date.available2025-08-01T17:31:07Z-
dc.date.issued2024-
dc.identifier.citationPorteiro, R., Paganini, F. y Bazerque, J. Combined learning and optimal power flow for storage dispatch in grids with renewables [en línea]. EN: 2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19-22 feb. 2024, pp. 1-5.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/50855-
dc.description.abstractWe propose an optimization and learning technique for controlling energy storage in power systems with renewables. A reinforcement learning (RL) approach is employed to bypass the need for an accurate stochastic dynamic model for wind and solar power; at the same time, the presence of the grid is explicitly accounted for through the “DC” approximation to the Optimal Power Flow (OPF) to impose line constraints. The key idea that allows the inclusion of such instantaneous constraints within the RL framework is to take as control actions the storage operational prices, which may be suitably discretized. A policy to select these actions as a function of the state is parameterized by a neural network model and trained based on traces of demand and renewables. We call this combined strategy RL-OPF. We test it on a trial network with real data records for demand and renewables, showing convergence to a control policy that induces arbitrage of energy across space and time.es
dc.description.sponsorshipANII-Uruguay, Becas FSE 1 2019 1 159457 y FCE 1 2021 1 167301.es
dc.format.extent5 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.relation.ispartof2024 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19-22 feb. 2024, pp. 1-5.es
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectEnergy storagees
dc.subjectPower system optimizationes
dc.subjectReinforcement learninges
dc.titleCombined learning and optimal power flow for storage dispatch in grids with renewables.es
dc.typePonenciaes
dc.contributor.filiacionPorteiro Rodrigo, Universidad ORT Uruguay-
dc.contributor.filiacionPaganini Fernando, Universidad ORT Uruguay-
dc.contributor.filiacionBazerque Juan Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución (CC - By 4.0)es
udelar.academic.departmentSistemas y Controles
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
PPB24.pdfVersión final319,37 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons