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Abstract—We propose an optimization and learning technique
for controlling energy storage in power systems with renewables.
A reinforcement learning (RL) approach is employed to bypass
the need for an accurate stochastic dynamic model for wind
and solar power; at the same time, the presence of the grid is
explicitly accounted for through the “DC” approximation to the
Optimal Power Flow (OPF) to impose line constraints. The key
idea that allows the inclusion of such instantaneous constraints
within the RL framework is to take as control actions the storage
operational prices, which may be suitably discretized. A policy to
select these actions as a function of the state is parameterized by
a neural network model and trained based on traces of demand
and renewables. We call this combined strategy RL-OPF. We
test it on a trial network with real data records for demand and
renewables, showing convergence to a control policy that induces
arbitrage of energy across space and time.

Index Terms—Energy storage, Power system optimization,
Reinforcement learning.

I. INTRODUCTION

Storage devices are being increasingly incorporated into
power grids, giving them new capabilities. Storage enables the
arbitrage of energy [1] over the time-scales of hours to days,
reducing costs through the alignment of supply and demand.
It also improves resilience since accidental islands may be
powered by stored energy [2]. It supports microgrids [3],
which may disconnect from the main network or reverse power
flows with customers selling energy to utility companies.

Large storage systems could be strategically designed with a
system-wide perspective and placed in a central bus [4]. Still,
storage is naturally distributed: installed locally by consumers,
incorporated to support solar and wind farms [5], or in the
form of electric vehicles that connect to the grid occasionally
and could move power in both directions [6].

In this context, we consider the problem of optimizing
energy dispatch of a power system with storage, renewable
sources, and grid constraints over a given discrete time hori-
zon. Storage introduces arbitrage dynamics, where generation
need not balance with demand instantly but can be accumu-
lated and used at more convenient times in the future. This
time, coupling makes the optimization fall in the category of
dynamic programming [7]; there is also a significant amount
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of uncertainty, both in renewable (solar and wind) resources
and in demand (e.g., from electric vehicles).

To bypass the need to model the complex solar, wind,
and load dynamics, we consider reinforcement learning (RL)
[8] as a tool for stochastic dynamic programming. Indeed,
RL for control of energy storage is being actively explored
[9], [10], [11], and has been proven effective for coping
with the uncertainty of wind forecasts [12], [13]. However,
standard RL is a black box approach that unduly abstracts
other components for which we do have reliable models: in
particular, energy exchanges in a grid obey the power flow
equations commonly used in model-based optimization of
energy storage management systems [14], [15]. The literature
on incorporation of such instantaneous constraints into RL is
quite limited, as the state of the art considers time-averaged
constraints satisfied in expectation [16].

In this paper, we put forward a combined optimization
strategy that is model-based regarding the power flows and
learns from data how to respond optimally to the uncertainty
in renewables and demand. The key idea lies in the choice
of control action: rather than attempt to learn the power
injections themselves, which are subject to the power flow
constraints, we propose to learn price variables assigned to
the storage units. Then, the injections are determined by these
prices and the generation costs through a DC-OPF model
and linear program [17]. The state variable in our RL setup
includes storage levels and samples of renewables and demand,
modeled as Markov processes with memory. In this way,
learning is based on empirical traces of these variables.

The paper is organized as follows: Section II presents
the model under consideration, and Section III describes our
optimization and learning approach. An illustrative application
example is given in Section IV, and conclusions in Section V.

II. MODELING PRELIMINARIES

A. Notation

t, discrete time index with sampling interval ∆T .
rt,dt ∈ RN distributed renewables and demands
gt ∈ RNG fuel-based generation
pt ∈ RM line power flows
bt, lt ∈ RN injections and levels of storage devices
at, kt ∈ RN , ct ∈ RNG , prices of bt, rt and gt.



B. Dynamic programming formulation

Consider a transmission grid with N buses, M lines, and
Ns ≤ N storage devices. For each bus n = 1, . . . , N , we
are given exogenous variables dt(n) and rt(n) representing
demand and renewable generation. In turn, we must determine
the variables gt(n) of fuel-based generations and bt(n) of
injections from storage devices, to minimize the cost

E

[
T−1∑
t=0

cTt gt + kT
t rt

]
, (1)

where ct and kt represent the time-varying prices of fuel-based
and renewable generation, respectively, and the expected value
accounts for the randomness of dt and rt.

A major source of coupling over time in the above opti-
mization is the dynamics of charge/discharge of storage units:

lt+1 = lt −∆Tbt. (2)

In addition, there may be time correlation in the demand and
renewable processes; we will treat these as Markovian, i.e.
where current values of rt, dt define an appropriate state.

Variables gt, rt, bt, dt are jointly constrained by power
balance conditions. These take place over a grid with trans-
mission lines m = 1, . . . ,M , that carry power flows pt(m),
subject to capacity constraints

|pt(m)| ≤ p̄(m). (3)

To relate these constraints to the variables of our dynamic
program requires a power flow model, which is now presented.

C. DC power flow model

We adopt the classical DC-power flow model for the grid
[17]. Dropping the time index momentarily, the active power
flowing on the lines satisfies p = X−1Aθ ∈ RM in terms
of the voltage angles θ ∈ RN , and the node balances are
collected in ATp = Hg + r + b − d ∈ RN . The adjacency
matrix A ∈ RM×N specifies the connectivity of the grid, with
all null entries except for A(m,n) = 1 and A(m,n′) = −1,
which define the sign of the flow on line m to be positive
when moving from n to n′. Matrix X ∈ RM×M , is diagonal
with X(m,m) = Xm representing the reactance of line m,
m = 1, . . .M , and H ∈ RN×NG represents the matrix of
zeros and ones that assigns generators to buses.

Although the equations for line flows and node balances
described above are enough to impose capacity constraints,
the following equivalent conditions remove the unnecessary
explicit reference to the angles θt:

p = F(Hg + r+ b− d), (4)

1Td = 1THg + 1Tb, (5)

where F = X−1AL† ∈ RM×N is the matrix of distribution
factors, defined in terms of the pseudo-inverse of the newtork
Laplacian L = ATX−1A. For more details, we refer to [18].
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Fig. 1. Reduced PJM grid model [19] comprised of N = 5 buses and M = 6
lines connecting NG = 5 fuel-based generators G1−G5, one storage device
and B, and three renewable sources R2−R4 to three loads loads L2−L4.

D. Reduced models

The number of optimization variables may be reduced if
we assume that the grid operator has identified a subset of
lines that typically operate at near capacity and the com-
plementary set of lines that are safely over-dimensioned so
their constraints do not activate. In this situation, we can
partition the power flow vector as p = (pA,pB). The rows of
(4) can be partitioned accordingly, and those corresponding
to pB can be discarded. The remaining model is pA =
FAA(HAg + rA + bA + FAB (HBg + rB) − d′

A, where
node variables r, b, d, and matrices F and H are partitioned
accordingly, and with the loads across the network collapsed
in the lower dimensional vector d′

A = FAAdA + FABdB .
All derivations henceforth will consider the entire network,

but they admit lower dimensional counterparts in terms of the
reduced model just described.

III. DISTRIBUTED OPTIMIZATION AND LEARNING

The optimal control policy searches for the grid flows
that minimize (1), with variables satisfying the instantaneous
constraints (3),(4),(5), and subject to dynamic, inter-temporal
constraints of two kinds: the storage balance (2), and the
stochastic dependence of dt and rt on its past values. Since
the latter are difficult to model, we apply RL to learn model-
free based on data. It is non-trivial, however, to retain the
partial model (2),(3),(4),(5) within the RL framework. Our
main idea to allow this combination is to use as action variable
the storage discharging price at per time t.

To fix ideas, imagine that the storage was not controllable
but was managed by an external operator that sells and buys
power to the grid operator at price at. Given at = a, the grid
operator would solve the following problem

min
(g,p,b)∈C

cTg + kT r+ aTb (6)

s. to: p = F(Hg + r+ b− d)

1Td = 1T (Hg + r+ b)

0 ≤ l− b∆T ≤ l̄

with C = {0 ≤ g ≤ ḡ, −p̄ ≤ p ≤ p̄, −b̄ ≤ b ≤ b̄}.
The linear optimization problem (6) is not coupled across

time, and solving it can be conceived as an operator that takes
demand, renewables, storage levels, and prices as inputs and
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Fig. 2. Feedback loop between the grid, OPF optimizer, and RL policy.

returns the optimized injections power injections from fuel-
based generators and storage devices, i.e.,

(gt,bt) = OPF (dt, rt, lt,at). (7)

A. Learning the prices of storage

With this operator at hand, the remaining challenge is to
learn the storage manager policy that adapts the prices at to
the state variables (dt, rt, lt) to optimize (1). This part fits
nicely in the RL framework [8], since it is comprised of

• An expected cost (1) to optimize across time.
• Dynamics of loads, renewables, and storage (dt, rt,bt)
• Randomness of renewables and demand (dt, rt)
• Control actions at representing prices of stored power.

Specifically, we want to learn a parametric random policy πλ

[8, p.312], with parameter λ ∈ RP such that

at ∼ πλ(dt, rt, lt, t). (8)

The control outputs produced by this policy πλ are regarded
as actions in the literature of RL, and these actions are
driven by the state of the system (dt, rt, lt). The main reason
to randomize the policy in RL, instead of searching for a
deterministic control law, is to be able to take exploratory
random actions at at the beginning of the learning process
when the best policy is still unknown and progressively adapt
the parameter λ taking into account the costs cTt gt + kT

t rt
resulting from these actions. Deciding the optimal actions
amounts to finding the policy parameters that solve

min
λ∈RP

Eπλ

[
T∑

t=1

cTt gt + kT
t rt

]
(9)

s. to: (gt,bt) = OPF (dt, rt, lt,at) (10)

where the expectation is taken with respect to the policy and
the distribution of the stochastic processes of dt and rt.

The feedback loop between the power system, the OPF
optimizer, and the price policy πλ is illustrated in Fig. 2. The
controller is divided into two blocks. The control policy πλ(·)
measures the state (dt, rt, lt) from the grid and declares a
control action at. This at does not control the system directly,
but it is converted by the second block (OPF), with additional
inputs (dt, rt, lt), into the pair (gt,bt) that is used to operate
the grid. After an interval ∆T , the system transits into a new
state (dt+1, rt+1, lt+1) following the unknown dynamics of
the demand and renewables, and the storage charge/discharge
(2). Then, a new control cycle begins.

Algorithm 1 RL-OPF
repeat

for t = 0, . . . , T − 1 do
Draw at ∼ πλ(a|dt, rt, lt, t)
Solve (6) and obtain Gt = cTt gt + kT

t rt
Update λ −= Gt∇λ log π(at|dt, rt, lt, t) (13)

end for
until convergence

Substituting (10) into (9) the problem becomes uncon-
strained, with cost

V(λ) = Eπλ

[
T∑

t=1

cTt gt (dt, rt, lt,at) + kT
t rt (dt, rt, lt,at)

]
where functions gt (·) and rt (·) are the solutions to (6). Hence,
the optimal λ is obtained by minimizing the unconstrained
value function V (λ) via stochastic gradient descent. One
major breakthrough in the literature of RL was to obtain
the gradient of V (λ) with respect to λ, that is ∇λV (λ) =
E [Gt∇λ log πλ(at|dt, rt, lt)], with Gt =

∑T
t=1 c

T
t gt + kT

t rt
[8, p.327]. Still, with this form of ∇λV (λ), the gradient de-
scent algorithm is not implementable since the expected value
in ∇λV (λ) also depends of the state transition probabilities
of dt and rt, and these transitions are unknown under our RL
working assumptions. To bypass this hindrance, the RL policy
gradient method resorts to a stochastic version of gradient
descent such that the expectation in ∇λV (λ) is dropped, and
the parameter λ is updated in the direction of [8, p.328]

∇̂λV (λ) = Gt∇λ log πλ(at|dt, rt, lt) (11)

All the information to compute (11) is available. Specifi-
cally, given samples dt and rt, we measure lt and compute
the cost Gt solving (6) sequentially following the loop in Fig.
2. In addition, πλ and at are part of our design, so they are
also at hand. This results in the stochastic Algorithm 1.

It remains to design πλ. A sensible choice should result
in a simple closed form for ∇λ log πλ in (11). The standard
choices in RL are Gaussian when the actions are modeled
as continuous random variables and soft-max (defined below)
when the actions live in a finite set. To guide this decision, we
introduce a viable simplification when all storage is injected
in a single bus, and the costs ct take values on a finite set.
In this case, it is sufficient to consider at as a variable taking
values on a finite set A = {ā1, . . . , āP } ⊂ R. The rationale
for this is that the nodal price α at the storage bus, defined
as a variable of the dual problem to (6) only takes a finite
number of values α1, α2, . . . , αP related to the costs of those
generators that are active. Hence, if two different storage prices
a and a′ are such that a, a′ ∈ (αp, αp+1), then the fuel-based
generation induced by these prices coincide, that is, g = g′,
when (g,b) = OPF (d, r, a) and OPF (d, r, a′) = (g′,b′).
As long as a is in this interval, the set of active generators is
unchanged, and thus, the amount of power injected from fuel-
based generators and storage is determined by the demand but
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Fig. 3. Average and dispersion of the aggregate demand as a function of the
time of the day during the winters of 2017-2019 [20]. Dt =

∑N
n=1 dt −∑N

n=1 rt represents the net demand, subtracting the renewable generation.

not by the price a. We will adopt this simplification, which
facilitates the convergence of RL. But if the storage is not
injected in one bus, then the Gaussian distribution can be used
instead.

B. Soft-max RL policy

If A is the finite set of mid-points āp = (αp−1+αp)/2, p =
2, . . . , P , we adopt a discrete soft-max policy [8, p.322]

at ∼ πλ(āp | dt, rt, lt, t) =
eµp(dt,rt,lt,t)∑P−1

p′=1 e
µp′ (dt,rt,lt,t)

. (12)

with µp(dt, rt, lt, , t), p = 1, . . . , P −1 being the outputs of a
parametric vector-valued function µλ(d, r, l, t) ∈ RP−1. The
log-derivative for the soft-max policy is given by [8, p.329]

∇λ log π(at|dt, rt, lt, t) =
∑
p

1[at = āp]∇λµp(dt, rt, lt, t)

−
∑
p

π(āp|dt, rt, lt, t)∇λµp(dt, rt, lt, , t). (13)

Although different parameterizations of µλ have been pro-
posed, including linear basis expansions and reproducing
kernel Hilbert spaces, the state of the art has moved towards
neural networks [8, p. 224]. In particular, we used a fully
connected network with one hidden layer. In this case, ∇λµp

in (13) is obtained via back-propagation [8, p. 238].
Remark: The RL-OPF strategy described above has the fol-
lowing attractive properties. It decouples the learning process
from the OPF optimization. By these means, it retains the well-
accepted DC-OPF model for the grid. In turn, RL handles
the unknown statistics for demand and renewables with the
mild Markov assumption that the distribution of dt and rt is
conditionally independent of the history given dt−1 and rt−1.

IV. NUMERICAL EXPERIMENTS

We tested our RL-OPF algorithm on the grid of Fig. 1.
Lines m = 1,2,3,4,5, and 6, are oriented from bus 5 to bus

4, 5 to 1, 1 to 4, 4 to 3, 1 to 2, and 3 to 2, respectively. With
this line numbering, reactances are given by X1 = 0.0297,
X2 = 0.0064, X3 = 0.0304, X4 = 0.0297, X5 = 0.0281,
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Fig. 4. Mean and deviation of the moving average of GT averaged across
10 episodic iterations. The parameters λ evolve to a stabilized minimum cost
after approximately 300 iterations.

X6 = 0.0108, in per unit on a basis of 100MW and 150KV,
and line capacities by p = (240, 400, 400, 400, 400, 400) MW.

Variables dt and rt are not simulated but formed from
real data in [20]. These records are actual measurements of
demand and wind power in the Uruguayan power grid during
the winter months from June to August 2017-2019. Although
these measurements do not correspond to the PJM grid in
Fig. 1, using them for these experiments serves the purpose of
corroborating that RL can adapt to real samples of renewables
and demand and the Markov assumption is not critical. The
aggregated net demand in [20] is presented as a time-varying
random variable in Fig. 3 along the day. It shows a typical
winter pattern where the wind power is abundant in the early
morning hours and the demand peaks during the evening. Each
record of aggregate demand in [20], for a particular time and
day, is divided into 38%, 29%, and 33%, which are served
from buses n = 2, 3, and 4, respectively in our test PJM grid.
Similarly, the total renewable power in [20] is divided in 42%,
33%, and 25%, injected to the same buses.

The maximum ḡ = (40, 170, 520, 200, 600)MW and prices
ct = (14, 100, 30, 40, 10) in $/MWh describe the generators.

The storage system, located at bus n = 1, is purposely large,
with capacity l̄ = 1500MWh and a maximum b̄ = 300MW.
The finite set A = {5, 15, 25, 28, 35, 45, 150} of activation
prices was determined experimentally by running OPF in (6)
for multiple values of lt ∈ (0, l̄), at ∈ (0, 150), and with
the records of dt and rt described above. These experiments
indicated that the nodal price α for bus 1 only takes values in
the finite set {10, 18, 27, 30, 40, 100} as lt dt and rt move, and
the set of active constraints does not change when at moves
in between these α’s, so it suffices to take prices at ∈ A.

The exponents µλ(dt, rt, lt, t) in (12) were designed
as a fully-connected neural network with 1 hidden layer
of 256 neurons, dropout 0.7 (see [8, p.226]), 8 inputs
(d2, r2, d3, r3, d4, r4, l1, t), and |A| = 7 outputs.

With these parameters and data, we run 800 iterations of the
loop in Algorithm 1, collecting in each iteration an episode of
T = 24 samples of states and actions in intervals of ∆T = 1
hour. The evolution of Algorithm 1 is shown in Fig. 4, where
the convergence of the parameters λ are manifested by the
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Fig. 5. Storage operation, as driven by the prices, effected from the learned
policy; (red) total net demand in MW for a representative day; (black) ) flow
bt in MW from and into the storage; (blue) resulting storage level in MWh.

stabilization to the average cost in (1) around $344500. Upon
convergence of the parameters λ, the resulting policy πλ in-
duces the energy arbitrage shown in Fig. 5. Specifically, in Fig.
5, we show how the storage is operated for a representative
day of demand and renewables in the records of [20]. With
the storage started at null-level, the prices given by πλ result
in the storage charging on the first hours of the morning when
the net demand is low because of high wind power, and then
discharging during the hours of high demand. Finally, Fig. 6
shows that the constraints in (6) activate for lines m = 1 and
m = 2. The OPF optimizer ensured that the grid constraints
were accounted for and satisfied. This observation highlights
the pertinence of the combined RL-OPF strategy proposed
here since OPF alone could not accommodate the dynamics,
and unconstrained RL alone would produce power flows that
could not be implemented without overloading the system.
In addition to the grid, the battery model (capacity and power
rate) is also factored in. In general, the OPF module can handle
more general modeling assumptions, e.g., battery efficiencies,
transmission losses, and AC-OPF models, to name a few.

V. CONCLUSIONS

We proposed a combined strategy for controlling storage
systems that enforces grid constraints via DC-OPF and learns
from data of demand and renewables via reinforcement learn-
ing. These two optimization techniques interact through the
price of storage, which is adapted to the data. By these means,
the proposed RL-OPF algorithm bypasses the need for an
accurate stochastic dynamic model for wind and solar power.
We tested this strategy in the PJM five-bus system with records
of real data from the Uruguayan power grid, converging to a
policy that effects an intuitive arbitrage of energy along the
day. The chosen OPF formulation with distribution factors is
amenable for a model reduction in case of large networks
focusing on parts of the grid that are known to overload.
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