english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49923 Cómo citar
Título: Transformers for genomic prediction.
Autor: Fariello, María Inés
Castro, Graciana
Hoffman, Romina
Musitelli, Mateo
Belzarena, Diego
Lecumberry, Federico
Tipo: Preprint
Palabras clave: Genomic Prediction, SNPs, genotype, phenotype, Neural Networks, Transformers
Fecha de publicación: 2025
Resumen: AI is becoming state-of-the-art across scientific fields, giving novel solutions to age-old problems. In genomic prediction, Machine Learning methods could not outperform linear regressions in a general way yet, but are becoming closer. An important feature when working with genomic data, which is non other than a long sequence of information, is to account for the linkage disequilibrium, i.e. dependencies between genome variations that do not need to be close in the genome, and variate with respect to the reference genome. To explode this feature, we evaluate a Transformer trained in a small yeast dataset. Although it did not outperform the state-of-the-art results yet, the model got close achieving an R2 score of 0.389 and 0.400 in Lactate and Lactose ambients, respectively, comparing to the R2 score of 0.568 and 0.582 for Lactate and Lactose ambients, for the linear model of Lasso, proposed by [7].This proves that there is still room for improvement.
Financiadores: Proyecto ANII : IA_1_2022_1_173411. Integración de datos genómicos y ambientales mediante aprendizaje profundo para selección genómica.
Citación: Fariello, M., Castro, G., Hoffman, R. y otros. Transformers for genomic prediction [Preprint] Publicado en : Advances in Artificial Intelligence – IBERAMIA 2024. Lecture Notes in Computer Science, vol 15277. Springer, Cham. DOI : https://doi.org/10.1007/978-3-031-80366-6_11.
Grupo de investigación: CICADA (Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático) IMERL-IIE.
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
FCHMBL25.pdfPreprint2,04 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons