Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49923
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Fariello, María Inés | - |
dc.contributor.author | Castro, Graciana | - |
dc.contributor.author | Hoffman, Romina | - |
dc.contributor.author | Musitelli, Mateo | - |
dc.contributor.author | Belzarena, Diego | - |
dc.contributor.author | Lecumberry, Federico | - |
dc.date.accessioned | 2025-05-06T15:57:41Z | - |
dc.date.available | 2025-05-06T15:57:41Z | - |
dc.date.issued | 2025 | - |
dc.identifier.citation | Fariello, M., Castro, G., Hoffman, R. y otros. Transformers for genomic prediction [Preprint] Publicado en : Advances in Artificial Intelligence – IBERAMIA 2024. Lecture Notes in Computer Science, vol 15277. Springer, Cham. DOI : https://doi.org/10.1007/978-3-031-80366-6_11. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/49923 | - |
dc.description.abstract | AI is becoming state-of-the-art across scientific fields, giving novel solutions to age-old problems. In genomic prediction, Machine Learning methods could not outperform linear regressions in a general way yet, but are becoming closer. An important feature when working with genomic data, which is non other than a long sequence of information, is to account for the linkage disequilibrium, i.e. dependencies between genome variations that do not need to be close in the genome, and variate with respect to the reference genome. To explode this feature, we evaluate a Transformer trained in a small yeast dataset. Although it did not outperform the state-of-the-art results yet, the model got close achieving an R2 score of 0.389 and 0.400 in Lactate and Lactose ambients, respectively, comparing to the R2 score of 0.568 and 0.582 for Lactate and Lactose ambients, for the linear model of Lasso, proposed by [7].This proves that there is still room for improvement. | es |
dc.description.sponsorship | Proyecto ANII : IA_1_2022_1_173411. Integración de datos genómicos y ambientales mediante aprendizaje profundo para selección genómica. | es |
dc.format.extent | 10 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | Genomic Prediction | es |
dc.subject | SNPs | es |
dc.subject | genotype | es |
dc.subject | phenotype | es |
dc.subject | Neural Networks | es |
dc.subject | Transformers | es |
dc.title | Transformers for genomic prediction. | es |
dc.type | Preprint | es |
dc.contributor.filiacion | Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.contributor.filiacion | Castro Graciana, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.contributor.filiacion | Hoffman Romina, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.contributor.filiacion | Musitelli Mateo, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.contributor.filiacion | Belzarena Diego, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.contributor.filiacion | Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
udelar.investigation.group | CICADA (Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático) IMERL-IIE. | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
FCHMBL25.pdf | Preprint | 2,04 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons