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Abstract. AI is becoming state-of-the-art across scientific fields, giv-
ing novel solutions to age-old problems. In genomic prediction, Machine
Learning methods could not outperform linear regressions in a general
way yet, but are becoming closer. An important feature when working
with genomic data, which is non other than a long sequence of infor-
mation, is to account for the linkage disequilibrium, i.e. dependencies
between genome variations that do not need to be close in the genome,
and variate with respect to the reference genome. To explode this feature,
we evaluate a Transformer trained in a small yeast dataset. Although it
did not outperform the state-of-the-art results yet, the model got close
achieving an R2 score of 0.389 and 0.400 in Lactate and Lactose am-
bients, respectively, comparing to the R2 score of 0.568 and 0.582 for
Lactate and Lactose ambients, for the linear model of Lasso, proposed
by [7].This proves that there is still room for improvement.

Keywords: Genomic Prediction · SNPs · genotype · phenotype · Neural
Networks · Transformers.

1 Introduction

Genomic prediction involves using the information contained in the genome of an
individual or a population to make inferences about phenotypes, such as specific
traits or diseases. It is based on the premise that certain variations in DNA, such
as nucleotide variations known as Single Nucleotide Polymorphisms (SNPs) are
associated, due to linkage disequilibrium, with mutations responsible for the
variation that certain traits present, or the presence or absence of diseases. In
this context, improving the interpretation and prediction of data is a constant
challenge due to significant differences in data sets, population structure, and
sample size.

To continuously improve the results of linear models and seek alternatives
to these models, we aim to apply Transformers [13] in the field of genomic
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Fig. 1. Representation of the input data to our problem.

Prediction, as they have demonstrated great capacity for capturing long-term
relationships in sequences. Successfully adapting and training a model that can
extract and learn biological dependencies from dependencies between positions
in data sequences could lead to a major breakthrough [3]. The ability of Trans-
formers to capture contextual information and model long-range dependencies
makes them strong candidates for this task.

We propose to train a model based on the one proposed by Jubair et al. [8]
to predict yeast growth in two different environments, Lactate and Lactose.

2 Problem Description

We have a database with information on yeast growth in forty-eight different
environments. The yeast database contains growth information for 1,008 yeast
strains in forty-eight different environments. Each strain includes information
on 11,623 SNPs, encoded with values zero or one depending on whether the
individual presents a variation at that position in their genotype. The phenotype
value that quantifies its growth in that environment is associated with each
individual.

The problem addressed is predicting yeast growth in each of the aforemen-
tioned environments. Specifically, we worked with the Lactate and Lactose en-
vironments. Yeast growth is a phenotype that is quantified numerically, having
for each yeast genotype its corresponding growth phenotype, as illustrated in
Figure 1.

Although genomic prediction is a very promising approach in the field of
genetics, increasing the accuracy of genomic predictions across various models
remains a challenge. Multi-phenotypic models, that is, those that predict mul-
tiple phenotypes simultaneously, have shown promising results when evaluated
according to the article “Multi-trait multi-environment genomic prediction of
agronomic traits in advanced breeding lines of winter wheat” [5]. In light of the
aforementioned, we therefore implement a multi-trait Transformer model and
seek to compare its results to those of a single-trait Transformer model.
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Additionally, a commonly used approach in multivariate genetics is index
selection, which assigns different weights to each trait based on its economic
importance. However, classical index selection only optimizes genetic gain in the
next generation and requires experimentation to find the weights that lead to the
desired outcomes, according to the article “Multi-trait genomic selection methods
for crop improvement” [10].

3 Model

Transformers are particularly important because they revolutionized NLP by
providing a more efficient way to process sequences compared to previous recurrent-
based models. They excel at handling long-range dependencies, effectively under-
standing and modeling relationships between elements across entire sequences.
This is achieved through the attention mechanism, which dynamically adjusts
the importance of different elements based on their relevance to each other.
Additionally, Transformers support parallelization during training, significantly
enhancing both the performance and speed of training large models. These ca-
pabilities make Transformers a powerful and versatile tool for a wide range of
applications beyond NLP, including genomics, where understanding complex de-
pendencies within sequences is crucial.

In the field of genomics, the parallels between language and genetic sequences
make the implementation of Transformers particularly appealing. The attention
mechanism of Transformers can effectively model dependencies between different
genomic regions, capturing the interactions that define linkage disequilibrium.
An example of this occurrence is shown in Figure 2, where the linkage disequi-
librium is shown for a soybean protein genome.

Fig. 2. Stable SNP interactions related to soybean protein content under multiple
environments. The soybean genome is represented by a circle. The blue lines indicate
the interactions between two markers or regions, presented by Chen et al. [2].
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Fig. 3. Model trained with the Yeast database for predicting growth in different envi-
ronments.

To predict a phenotype from the genotype, the model must learn the depen-
dencies and semantics of the input data. In the Transformer algorithm, this task
is performed by the Encoder, so the model used for this problem will not be a
bidirectional Encoder-Decoder but will consist solely of the former.

The implemented model initially presents a linear layer functioning as an
Embedding layer. It has as input dimension the number of SNPs (p) per indi-
vidual and as output the hyperparameter of the dimension of the embedding
space (embed_dim). Each of the positions that make up the individual’s geno-
type is represented by a vector of dimension embed_dim, so when entering the
Encoder, each individual is represented by a matrix of dimension embed_dim×p.

An explicit Positional Encoding module is not used since each position has
a distinct representation at the output of the linear layer, thus preserving the
positional information. The number of Encoders in the model is defined by the
hyperparameter NLayers. The structure, in this case, is the same as the En-
coder structure presented for the Transformer : a Multi-Head Self Attention block
formed by h heads, a Feed-Forward Neural Network (FFN) of dimension ff_dim,
and two Add & Norm layers at the output of each of the previously mentioned
modules. Both h and ff_dim are hyperparameters of the model.

Finally, the model has a linear layer responsible for predicting the pheno-
type for each individual. The output dimension (output_dim) will be defined
according to the number of phenotypes to be predicted with the same model
(output_dim = 1 for predicting one phenotype and output_dim = 2 for predict-
ing two). Figure 3 shows the diagram of the implemented model.

To implement the model, we use modules from the Pytorch library. In par-
ticular, the Encoder class TransformerEncoder and nn.Linear module for the
Embeddings layer and output FFN.

4 Hyperparameter Search and Training

The model training was divided into two stages: first, a search for optimal hyper-
parameters was conducted, followed by the training of the model. All experiments
were carried out on the ClusterUY [11] using a 40 GB GPU.

For the hyperparameter search, possible values for the learning rate, h, ff_dim,
embed_dim, and dropout (used for regularization) were defined, where each
training session used a different combination of these values. Finally, the combi-
nation that yielded the best value for the Pearson Correlation Coefficient (PCC),
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r(x,y), was selected. The result is a coefficient that measures the linear depen-
dence between variables x and y, with values ranging from [−1,+1]. The closer
r is to the extremes of the interval, the greater the linear dependence between
the variables, while the closer it is to the middle 0, the lesser the dependence.
Its mathematical expression is as follows:

r(x,y) = cov(x,y)
σxσy

=
∑n−1

i=0 (xi−mx)(yi−my)√∑n−1
i=0 (xi−mx)2

∑n−1
i=0 (yi−my)2

, (1)

where σx and σy are the variances of x and y, respectively, and mx and my are
the means of x and y, respectively. Initially, tests were conducted to consider the
number of Encoders as a hyperparameter, but due to computational limitations,
it was decided to train the model with two. The implementation was done using
the Optuna library [1].

The available dataset was divided into five folds to enable 5-fold cross-
validation training with subsequent validation. Batches of eight individuals were
taken, each with a sequence of 11,623 SNPs in length.

The Mean Squared Error (MSE) was used as the loss function, a measure
of how accurate the machine learning model is in terms of predicting the values
ỹi = g(xi). It is used in cases where high sensitivity to outlier values is desired
due to being squared. Its mathematical expression is:

MSE(x) =
1

n

n−1∑
i=0

(yi − ỹ)2. (2)

The PCC (Equation (1)) was used as the gain function. This meant that for
each epoch, although the parameters were updated considering the MSE, once
validation was done, the best model was chosen according to the epoch with the
highest PCC. It is also noteworthy that the training MSE is computed during
the forward propagation of the network and the validation MSE after backpropa-
gation, resulting in better validation results than in training. The optimizer used
was Adam [9]. The model parameters were initialized using the Xavier Uniform
method [6].

Training was conducted for a maximum of one thousand epochs. Early stop-
ping was used as a regularization method, stopping the training if no improve-
ments in the validation PCC were observed after thirty-five consecutive epochs.
Additionally, Dropout [12] stages were used both in the neural network within
the Encoder and at its output, both with the same dropout ratio.

5 Results

Figure 4 shows the evolution of PCC and MSE for training and validation as a
function of epochs for Lactate. It can be observed that as the epochs progress,
both results improve, with PCC increasing and MSE decreasing, as expected.
As in the case of the simulated data, the validation results are better than those
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Fig. 4. Learning curves for data of yeast growth in Lactate environment. On the left
is the PCC curve (used as gain function), and on the right is the MSE curve (used as
the loss function). Training curves are in blue and validation curves are in orange.

for training. However, the training was stopped due to the early stopping. Addi-
tionally, the training PCC could have achieved a higher value if the validation
PCC had not remained unchanged for approximately 30 epochs, which was the
stopping condition.

In the case of Lactose, the behavior of MSE and PCC is similar to that of
Lactate. It can be seen that there is some bias in the MSE and the presence
of overfitting since around epoch 150. The MSE for validation surpasses that of
training, as shown in Figure 5. Again, it is observed that, despite no improve-
ment being presented for more than approximately 50 epochs in validation PCC
(causing the training to stop), the training PCC could have reached a higher
value, as it shows an increasing trend up to this epoch. The same could have
been manifested in the training MSE with respect to the decrease.

In Figure 6, the PCC and MSE curves for each phenotype with the multi-
trait model are presented. The results are similar to those obtained when training
the model with a single phenotype: as the PCC increases, the MSE decreases.
However, the MSE presents a smaller bias, and unlike in the case of Lactate, the
model does not overfit.

In Figure 7, the test results are presented. In both cases, the results obtained
with multi-trait were better than training the model with a single phenotype.
Although MSE does not show significant changes, the PCC increased moderately.
The relationship is not strongly linear in all cases, as the PCC is not as high as
in the simulation cases.

To compare the results obtained with other models that have been trained
for this dataset, the R2 metric (coefficient of determination) is calculated. This
metric is used to evaluate how well a model has performed on a dataset, with its
best result being one and decreasing towards zero as the model’s performance
declines. A R2 value of zero indicates that the model’s predictions are as good as
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Fig. 5. Learning curves with Lactose growth data. On the left is the PCC curve (used as
gain function), and on the right is the MSE curve (used as the loss function). Training
curves are in blue and validation curves are in orange.

Environment Grinberg GBM One trait Multitrait

Lactate 0.568 0.830 0.389 0.478
Lactose 0.582 0.860 0.400 0.536

Table 1. Comparation of R2 metric results for yeast growth in Lactate and Lactose
obtained with both our models, Transformer One-Trait and Transformer Multitrait,
with the ones reported by Grinberg et al. [7], Elenter et al. [4] .

those of a random model, while if the result is outside the interval [0, 1], the model
has performed worse than random predictions. The R2 metric results, obtained
for the phenotype predictions of Lactate and Lactose One trait and Multitrait,
are presented in Table 1, along with other results reported by Elenter et al. [4],
compared for the same phenotypes predicted by other models. It can be observed
from the table that the results for the Multi-trait models significantly outperform
the Single-trait models, as previously indicated. On the other hand, while these
results do not reach those of Gradient Boosting Machine (GBM) [4] presented in
the table, they do achieve the order of magnitude of those of Grinberg et al. [7],
confirming the robustness of the implemented algorithm.

6 Conclusions

In this paper, we have experimented with Transformers applied to genomic pre-
diction. We have described the different considerations taken to do the hyper-
parameter tunning and train the model.

The results obtained are promising and allow us to affirm that it is feasible
to achieve satisfactory results by using models based on Self-Attention on ge-
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Fig. 6. Learning curves for yeast growth in Lactate and Lactose, predicted using the
Multitrait model. On the left is the PCC curve which shows the average of the PCC
obtained for the two phenotypes in training (blue) and validation (orange). On the
right, the MSE curves, with training shown in blue and validation in orange.

nomic data sequences. However, there are modifications, validations, and new
simulations that need to be explored, including:

1. More exhaustive hyperparameter searches.
2. Balancing choosing the best models according to PCC and MSE.
3. Investigating better parameter initialization methods.
4. Repeating the process on new datasets.

The first point is directly related to the computing power available. The
maximum GPU memory accessible for us was 40 GB, and it was with this that
hyperparameter searches were performed using Optuna. For all searches con-
ducted, the best parameters obtained were always the maximum of the intervals
studied, indicating that larger hyperparameter intervals must be studied. This
could not be done as memory saturation was reached in all cases.

The second point on the list is due to the obtained results for Lactate, where
overfitting is observed in the training curve with the MSE metric. This is related
to the fact that the stopping condition and the choice of the best epoch were
made based on the PCC coefficient, but a way should have been found to balance,
and include, the results for each epoch of the MSE metric. Although the best
epoch was tried according to the MSE metric, and the results were not better,
other alternatives could have been considered, such as combining both PCC and
MSE results.

In conclusion, although this work has shown positive results and promises
great potential, the implementation of additional modifications and validations,
as well as the exploration of new simulations and methods, are necessary to
continue improving the accuracy and robustness of the model. Exploring these
aspects will establish a solid foundation for future research and applications in
the field of genomics using models based on Transformers.
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Fig. 7. Scatter plot of true phenotype values of the test set versus their predictions.
In figure (a) the results of One-trait model used to predict phenotype in Lactate, in
figure (b) One-trait model results for Lactose. Figures (c) and (d) show the results for
the Multitrait model in Lactate and Lactose environments respectively. In all figures,
the linear fit is shown in red.


