english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49916 Cómo citar
Título: On the quest for foundation generative-AI models for anomaly detection in time-series data.
Autor: García González, Gastón
Casas, Pedro
Martínez, Emilio
Fernández, Alicia
Tipo: Preprint
Palabras clave: Multivariate Time-Series Data, Anomaly De- tection, Generative AI, VAE, Foundation Models
Fecha de publicación: 2024
Resumen: Network security data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series (MTS) process. We investigate a novel approach to time-series modeling, inspired by the successes of large pre-trained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pre-trained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. Based on the DC-VAE architecture originally designed for multivariate anomaly detection, FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts and ideas of this foundation model, and present some preliminary results in a multi-dimensional network monitoring dataset, collected from an operational mobile Internet Service Provider (ISP). This work represents a significant step forward in the development of foundation generative-AI models for anomaly detection in time-series analysis, with applications spanning cybersecurity, network management, and beyond.
Financiadores: Este trabajo ha sido parcialmente financiado por Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – ID887504,y por el proyecto uruguayo CSIC project with reference CSIC-I+D-22520220100371UD Generalization and Domain Adaptation in Time-Series Anomaly Detection.
Citación: García González, G., Casas, P., Martínez, E. y otros. On the quest for foundation generative-AI models for anomaly detection in time-series data [Preprint]. Publicado en: 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 08-12 jul. 2024, pp. 252-260.
Departamento académico: Procesamiento de Señales
Grupo de investigación: Tratamiento de Imagenes
Licencia: Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
GCMF24a.pdfPreprint1,5 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons