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Abstract—Network security data generally consists of hun-

dreds of counters periodically collected in the form of time-

series, resulting in a complex-to-analyze multivariate time-

series (MTS) process. We investigate a novel approach to

time-series modeling, inspired by the successes of large pre-

trained foundation models. We introduce FAE (Founda-

tion Auto-Encoders), a foundation generative-AI model for

anomaly detection in time-series data, based on Variational

Auto-Encoders (VAEs). By foundation, we mean a model

pre-trained on massive amounts of time-series data which

can learn complex temporal patterns useful for accurate

modeling, forecasting, and detection of anomalies on pre-

viously unseen datasets. Based on the DC-VAE architecture

originally designed for multivariate anomaly detection, FAE

leverages VAEs and Dilated Convolutional Neural Networks

(DCNNs) to build a generic model for univariate time-series

modeling, which could eventually perform properly in out-of-

the-box, zero-shot anomaly detection applications. We intro-

duce the main concepts and ideas of this foundation model,

and present some preliminary results in a multi-dimensional

network monitoring dataset, collected from an operational

mobile Internet Service Provider (ISP). This work represents

a significant step forward in the development of foundation

generative-AI models for anomaly detection in time-series

analysis, with applications spanning cybersecurity, network

management, and beyond.

Index Terms—Multivariate Time-Series Data, Anomaly De-

tection, Generative AI, VAE, Foundation Models

1. Introduction

Network security and monitoring data typically com-
prises hundreds or even thousands of variables that are
regularly measured and analyzed as time-series data, re-
sulting in complex multivariate time-series (MTS) pro-
cesses. Detecting anomalies in real-time within such MTS
processes is crucial for effective network security, in
particular to detect unknown attacks. While the litera-
ture offers a plethora of traditional statistical models for
anomaly detection in time-series data, they often struggle

with the non-stationary, non-linear, and noisy nature of
network monitoring data, leading to suboptimal predic-
tions. In recent years, there has been a surge in the
adoption of modern deep learning-based approaches for
time-series anomaly detection [1], owing to their ability to
handle complex dependencies and generate realistic data
sequences. Generative AI methodologies, in particular,
have gained attention for their performance in time-series
modeling [2]–[4].

In this paper, we focus on devising a Generative AI
model capable of matching or even surpassing the per-
formance of conventional time-series modeling methods
without the need for training on the specific target dataset
- a concept known as Zero-Shot Learning (ZSL). ZSL
is a problem setup in deep learning where, at test time,
a learner observes samples from classes which were not
observed during training, and needs to predict the class
that they belong to. The ZSL concept is powerful and
appealing for network security applications, and such a
foundation model could be utilized with limited, or even
without specific fine-tuning on the downstream data typi-
cally used by other models. The zero-shot approach offers
several inherent advantages: firstly, it simplifies the appli-
cation of the model for time-series modeling, eliminating
the requirement for specialized knowledge of fine-tuning
techniques and the significant computational resources
associated with them; secondly, it naturally aligns with
scenarios characterized by limited data availability, where
training or fine-tuning data is limited; lastly, by harnessing
the comprehensive pattern extrapolation capabilities of
extensively pre-trained models, it circumvents the substan-
tial time, effort, and domain-specific expertise typically
demanded for crafting dedicated time-series models.

We therefore investigate if a model pre-trained on mul-
tiple time-series data can learn temporal patterns useful
for accurate forecasting on previously unseen time-series.
For doing so, we use as starting point our former DC-
VAE model [5], a deep-learning-based, unsupervised, and
multivariate approach to real-time anomaly detection in
MTS data, based on popular Variational Auto-Encoders
(VAEs) [6]. VAEs are generative AI models that learn
the underlying distribution of the data and can generate

252

2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

© 2024, Gastón García González. Under license to IEEE.
DOI 10.1109/EuroSPW61312.2024.00034

20
24

 IE
EE

 E
ur

op
ea

n 
Sy

m
po

siu
m

 o
n 

Se
cu

rit
y 

an
d 

Pr
iv

ac
y 

W
or

ks
ho

ps
 (E

ur
oS

&
am

p;
PW

) |
 9

79
-8

-3
50

3-
67

29
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

EU
RO

SP
W

61
31

2.
20

24
.0

00
34

Authorized licensed use limited to: ANII. Downloaded on April 30,2025 at 18:47:07 UTC from IEEE Xplore.  Restrictions apply. 



new samples from this distribution. In the context of
time-series data, VAEs can capture latent representations
of temporal patterns and generate sequences that exhibit
similar characteristics, making them powerful for gener-
alization and ZSL. VAEs learn a low-dimensional latent
space representation of the input data, which captures the
underlying structure of the data in a compressed form. By
learning meaningful representations, VAEs can generalize
well to unseen data points that lie within the same dis-
tribution as the training data, supporting generalization to
new instances. As generative models, VAEs can generate
new samples from the learned latent space distribution.
potentially enabling ZSL, as the model can produce sam-
ples that belong to unseen classes or categories without
explicitly training on them. By sampling from the latent
space, VAEs can generate diverse and realistic data points
even for classes not present in the training set.

We introduce and investigate FAE (Foundation Auto-
Encoders), a foundation generative-AI model for anomaly
detection in time-series data, based on VAEs. FAE uses
DC-VAE’s network architecture [5], originally designed
for multivariate anomaly detection. In particular, it lever-
ages VAEs and Dilated Convolutional Neural Networks
(DCNNs) to build a generic model for univariate time-

series modeling, which could eventually perform properly
in out-of-the-box, zero-shot anomaly detection applica-
tions. The reasons for moving from multivariate to univari-
ate time-series analysis are twofold: from an architectural
point of view, we become independent of the spatial
dimensionality of a MTS dataset – i.e., we fix the spatial
input dimensionality to one – and can therefore apply
exactly the same architecture without any modifications;
from an analytics perspective, while a univariate model is
at a disadvantage compared to a multivariate model – i.e.,
it loses access to cross-correlational information, which
we have shown might be critical for better data modeling
[5], [7] – the univariate version puts the focus exclusively
on the temporal behavior of the data, which is exactly the
target of the generalization we are looking for – we want
a model that generalizes across the temporal dimension
and not necessarily the spatial one, which varies among
different problems.

We introduce the main concepts and ideas behind FAE,
along with its network architecture, and present some
preliminary results in the analysis a multi-dimensional
network monitoring dataset – TELCO [8], collected from
an operational mobile Internet Service Provider (ISP),
which we have recently released openly to the research
community. The remainder of the paper is organized as
follows: Section 2 presents an overview of the related
work. In Section 3 we describe the FAE model and its
underlying network architecture. Section 4 reports the
preliminary results obtained with FAE on the analysis
of time-series from TELCO, with a particular focus on
generalization and zero-shot modeling. Discussion on the
potential of FAE, along with its limitations, is presented
in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

There are multiple surveys on general-domain
anomaly detection techniques [9]–[11] as well as on net-
work anomaly detection [12], [13]. The diversity of data

characteristics and types of anomalies results in a lack of
universal anomaly detection models. Modern approaches
to time-series anomaly detection based on deep learning
technology have flourished in recent years [1]. Due to their
data-driven nature and achieved performance in multiple
domains, generative models such as VAEs and Generative
Adversarial Networks (GANs) [14] have gained relevance
in the anomaly detection field [4], [15]–[20].

VAEs [6], [21], [22] represent a powerful and widely-
used class of models to learn complex data distribu-
tions. Unlike GANs, a potential limitation of VAEs is
the prior assumption that latent sample representations
are independent and identically distributed. While this is
the most common assumption followed in the literature,
there is ongoing research on the benefits of accounting for
covariances between samples in time to improve model
performance [23]–[26]. For example, while the original
work [6] assumes that the prior over the parameters and
latent variables are centered isotropic Gaussian and the
true posteriors are approximately Gaussian with approx-
imately diagonal covariance, [25] proposes an approxi-
mation capturing temporal correlations, by considering a
Gaussian process prior in the latent space.

Modeling data sequences through a combination of
variational inference and deep learning architectures has
been vastly researched in other domains in recent years,
mostly by extending VAEs to Recurrent Neural Networks
(RNNs), with architectures such as STORN [27], VRNN
[28], and Bi-LSTM [29] among others. Convolutional
layers with dilation have been also incorporated into
some of these approaches [2], [30], allowing to speed
up the training process based on the possibilities of par-
allelization offered by these architectures. One of these
approaches using Dilated Convolutional Neural Networks
as the encoder-decoder architecture for VAEs is our DC-
VAE model [5], [31].

Transformer-based models [32] are gaining popular-
ity in recent years for time-series analysis, given their
remarkable performance in large-scale settings, such as
long sequence time-series forecasting (LSTF). LSTF re-
quires capturing long-range dependencies between input
and output efficiently. Earlier examples include the TFT
interpretable model [33] and the MQTransformer model
[34]. The Informer model [35] introduced Transformers
for long sequence forecasting through sparse self-attention
mechanisms. This concept has since been further refined
through various forms of inductive bias and attention
mechanisms in models like the Autoformer [36] and the
FEDformer [37].

Finally, there is a recent surge in papers targeting
the conception of foundation models for time-series data,
capable of generating accurate predictions for diverse
datasets not seen during training. The underlying concept
of these models is to rely on highly expressive, large-scale
architectures which are trained on millions or billions of
time-series data points, coming from very diverse domains
and having high heterogeneity in terms of temporal be-
haviors and characteristics. TimeGPT-1 [38], PromptCast
[39], LLMTime [40], TimesFM [41], Lag-Llama [42],
and Time-LLM [43] are all examples of novel foundation
models for time-series forecasting, which target a ZSL
application. FAE follows exactly this concept, but using
a much smaller and simpler architecture. While this adds
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Figure 1. FAE’s variational autoencoder. The decoding function enables
a generative AI process, by sampling the latent space distribution.

certain limitations in terms of expressiveness and therefore
generalization capabilities, it also opens the door to the ex-
ploration of other venues, such as the combined utilization
of smaller foundation models in the form of ensembles,
in combination with domain detection strategies.

3. FAE Model and Network Architecture

Time-series are generally processed through sliding
windows, condensing the information of the most recent T
measurements. We define X as the input vector in R

1×T .
As depicted in Figure 1, for a given input X , the trained
VAE model produces two different predictions, µX and
σX – vectors in R

1×T , corresponding to the parameteriza-
tion of the probability distribution which better represents
the given input. If the VAE model was trained (mainly)
with data describing the normal behavior of the monitored
system, then the output for a non-anomalous input would
not deviate from the mean µX more than a specific integer
α times the standard deviation σX . On the contrary,
if the input presents an anomaly, the output would not
belong to this normality region. The main goal of the VAE
model is to learn a compressed representation of X in an
unsupervised manner. This compressed representation Z

is referred to as a latent variable, and it is learned by
training the VAE to generate data that is similar to the
input data. VAEs learn a probabilistic mapping between
the input data and its latent variable, which allows to
generate new data by sampling from the learned latent
variable distribution.

Figure 2 depicts the encoder/decoder architecture used
in FAE, which is an adaptation of DC-VAE’s architecture,
for the case of univariate time-series analysis. The FAE
model functions as a univariate model trained on various
series within a system simultaneously, treating them as
distinct classes of series. Similar to the original DC-
VAE version, FAE allows for monitoring of all time-
series within a MTS process using a single model, albeit
analyzing one time-series at a time. The architecture,
based on dilated convolutional neural networks (DCNNs),
is capable to exploit the temporal dependence of values
for longer sequences. The main difference with DC-VAE
is that the new architecture has to accommodate univari-
ate input samples X ∈ R

1×T , rather than multivariate
ones. To maintain the concept of compression – i.e., the
dimension of the latent space Z has to be lower than
the input dimension of X – the latent space in FAE
reduces dimensionality along the temporal dimension; in
DC-VAE, the dimensionality reduction operates in the
spatial dimension.
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Figure 2. FAE’s encoder/decoder architecture using causal dilated con-
volutions, implemented through a stack of 1D convolutional layers.

Using DCNNs forces to keep the sequence length T
at the output of each hidden layer – referred to as H

– thus H ∈ R
U×T , where U is the number of filters

in the layer. As shown in Figure 2, the dilation of each
layer at the encoder increases exponentially as the network
deepens, ensuring that each time t of the output at the
final layer has information from all the previous times of
X up to t, i.e., [X0, X1, ..., Xt]. This means that the last
sample of the output at position T−1 contains information
from the entire input sequence X . Then, two layers in
parallel with J filters of size one are applied at the output
of the last hidden layer, bringing the output to a J-
dimensional latent space. The output of the encoder results
from keeping only the values at time T−1 at the output of
these filters, resulting in vectors µZ ,σZ ∈ R

J×1, which
define the distribution in the latent space of the inputs X ,
where J < T . Using the reparameterization trick [6], the
latent vector Z ∈ R

J×1 is generated, corresponding to
the encoding of observation X , and is then fed into the
decoder. The decoder remains the same as in DC-VAE,
which is symmetric with respect to the encoder. However,
given that its input requires a sequence of T values and
not a single one, the input to the decoder is generated by
repeating the vector Z for a total of T times, obtaining an
input sample ∈ R

J×T . As a result, FAE’s decoder extracts
information from the same latent vector Z for each time
t, to generate the output parameters µX ,σX ∈ R

1×T ,
which are used to evaluate deviations from the input
observation X . If the FAE model was trained (mainly)
with data describing the normal behavior of the analyzed
time-series, then the value of a non-anomalous sample Xt

at time t would not deviate from the predicted mean µX t

more than a specific integer α times the standard deviation
σX t. On the contrary, if the sample is anomalous, it would
not belong to the region determined by the predicted mean
and standard deviation.

In terms of size of the architecture, an interesting
characteristic of FAE is that its structure and number of
layers is defined by the length T of the sliding window. In
particular, the number of hidden layers N and the length
of filters F are related through the dilation factor d = Fh

of the DCNNs, which grows exponentially with the layer
depth n ∈ [0, N − 1]. Subsequently, N is the minimum
value that verifies: T ≤ 2∗FN−1. In the architectural ex-
ample (cf. Figure 2), the window length is T = 8 and the
filter length is F = 2, and the target is achieved by taking
N = 3 hidden layers. This direct relationship between
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Figure 3. TELCO time-series, for one month worth of data (March 2021), sampled at a five minutes rate.

T and the network architecture has a strong practical
impact, making it easy to construct the encoder/decoder
based on the desired temporal-depth of the analysis. As a
final reference of architectural complexity, for a relatively
small FAE architecture, using T = 256 samples (less than
one day of samples, at a 5’ sampling-rate), the network
exposes roughly half a million free parameters to train.
Training FAE with a sufficiently large and heterogeneous
training set, comprising multiple time-series of different
characteristics, enhances its capability to generalize to
unseen data and eventually to different domains.

4. FAE Time-Series Prediction in the Practice

We experiment with FAE in the analysis of an open
MTS dataset arising from the monitoring of an operational
mobile ISP, consisting of time-series with different struc-
tural properties. Referred to as the TELCO dataset [8], this
large-scale – about 750 thousand samples, long time-span

– seven months’ worth of measurements (January 1st to
July 31st, 2021) collected at a five-minutes scale, multi-

dimensional – twelve different time-series, network mon-
itoring dataset includes ground-truth labels for anomalous
events at each individual time-series, manually labeled by
the experts of the network operation center (NOC) manag-
ing the mobile ISP. The twelve time-series are typical data
monitored in a mobile ISP, including the volume of data
traffic, number of SMS messages, number and amount of
prepaid data transfer fees, number and cost of calls, etc.

In this paper we focus on a more qualitative analysis
of FAE’s performance, focusing on its ability to properly
track and reconstruct the different TELCO time-series.
Figure 3 depicts a one-month example from the com-
plete TELCO MTS dataset. Different time-series expose
different behaviors, e.g., some of them are noisier (TS3

and TS9), others have lower dynamic ranges (TS1), and
some others show a smoother evolution (TS2). All time-

TABLE 1. GRID OF HYPERPARAMETERS USED IN THE MODEL

CALIBRATION.

Hyperparameter Grid Search Ranges Best

T - sequence length {128− 512}, step=32 256

J - latent dimension {16− T/4}, step=16 48

γ - learning rate {1e−5 − 5e−4} 6e−5

m - mini-batch size {16− 96}, step=16 32

U - number of filters {16− 128}, step=16 128

series exhibit daily seasonality, but some behave differ-
ently on weekends compared to workdays, while others
show monthly trends either ascending or descending.

4.1. Hyperparameter Search and Training

One of the most important aspects when working with
deep learning models is the search of model and training
hyperparameters, along with the subsequent training of
the model. Table 1 shows the grid used for the hyper-
parameter search, as well as the best values (smallest
validation loss), identified by Tree-structured Parzen Esti-
mator (TPE) search [44]. In total, 50 attempts were tested
on the grid. In the table, T corresponds to the sequence
length, and J is the dimensionality of the latent space.
Training hyperparameters include the learning rate γ and
the mini-batch size m. Finally, U is the number of filters
for each hidden convolutional layer, which together with
the number of layers and the input and output dimensions
define the size of the architecture in terms of the number
of trainable parameters p. Considering the five minutes
sampling rate of the time-series, the selected sequence
length of T = 256 samples corresponds to a time window
of 21hs and 20 minutes. The exact number of trainable
parameters in the identified architecture is p = 483.840.

We split the full, 7-months dataset in three inde-
pendent, time-ordered sub-sets, using measurements from
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Figure 4. Predictions with fully-trained FAE (12 time-series) in two days
of testing samples from June 2021 (Friday and Saturday).

January to March for model training (3 months), April for
model validation (1 month), and May to July for testing
purposes (3 months). One of the disadvantages of the FAE
model as compared to the multivariate DC-VAE model is
the training time, and hence the time required for hyper-
parameter search. The FAE model requires approximately
five times more training time than DC-VAE.

4.2. FAE Modeling Performance

We evaluate the prediction performance of FAE in
samples from the testing set, considering training on the
full three months of data, for the 12 time-series, i.e.,
more than 300.000 samples. Figure 4 depicts the resulting
predictions µX t and σX t for two days of testing sam-
ples Xt from June 2021, for four representative time-
series, including TS1, TS4, TS8, and TS12. To add more
variability, we consider a working day (Friday 4th) and
a weekend day (Saturday 5th). FAE can properly track
different types of behavior in the time-series, including the
strong seasonal daily component, but also the operation
during workdays and weekends, clearly visible in TS12.
Interesting to note is how different periods of time-series
variability result in more or less tight normal-operation
regions estimated by FAE, as defined by σX t.

For the sake of completeness and comparison, Figure
5 depicts the predictions obtained by the former DC-
VAE multivariate model in the same four time-series,
using a different time period in April – in this case
from the validation test – from Friday 16th till Saturday
17th. Results are similar, but in particular for TS12, DC-
VAE can better capture the drop observed on Saturday
evening, exploiting the strong spatial correlation observed
on Saturday between TS12, TS11, and both TS1 and TS2

(cf. Figure 3). Nevertheless, note that FAE predictions are
slightly better than DC-VAE’s for TS8 and TS12 on Friday.

To better understand the modeling capabilities of FAE,
we focus on the analysis of the latent space Z, for
the different time-series and the different times of the
analysis. Recall that the latent space set for FAE in this
analysis is J = 48; to easily visualize Z as a two- or

TS1

TS4

TS8

TS12

2

0

2

0

2

0

2

0

-2

4-16 00         4-16 12          4-17 00          4-17 00        4-18 00

TS1

TS4

TS8

TS12

Figure 5. Predictions with DC-VAE in two days of validation samples
from April 2021 (Friday and Saturday).

Z
PC2

Z
PC1

PC2PC2

Figure 6. Latent space representation – temporal evolution.

three-dimensional space, we apply standard PCA analysis,
and study the top-two and top-three principal components
ZPCi,...i=1,2,3. Figure 6 shows the latent representation
of each sample Xt for a single day, for all the 12 time-
series, depicting the encoded samples in colors, each
color representing a different three-hour period of the
day. Plotting the first two principal components shows
that each hour period maps to a certain position in the
latent space, and interestingly, the direction mirrors the
progression of hours on a clock, ordered continuously by
hour of the day.

Figure 7(a) depicts now the first three principal com-
ponents, displaying the previously analyzed four time-
series TS1, TS4, TS8, and TS12, independently. FAE maps
each time-series to a different region of the latent space,
showing it can properly differentiate among different time-
series characteristics. Closely located samples from differ-
ent time-series exhibit similar behaviors in the time-series
space. For example, time-series TS1 and TS12 are closer
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(a) Latent representations per time-series. (b) Workdays vs weekends, TS1. (c) Workdays vs weekends, TS4.

Figure 7. Latent space representation, (a) per different time-series (TS1, TS4, TS8, TS12), and (b,c) specifically for TS1 and TS4 in a temporal basis,
considering workdays (purple) and weekends (yellow).

to the center of the latent space, and both exhibit a similar
behavior (cf. Figure 3), with marked differences between
weekends and workdays. On the other hand, time-series
TS4 and TS8 have a similar temporal behavior without
marked variations between workdays and weekends, and
are located together and farther from the center of Z.

The difference between time-series for workdays and
weekends is further explored in Figures 7(b,c), where
workday samples are displayed in purple color, and week-
ends in yellow, for (b) time-series TS1 and (c) time-
series TS4. For reference, the plots include two spheres
with radius one and two, reflecting the expected Gaussian
distribution of the latent space. The difference between
workdays and weekends are clear for TS1, with weekends
clustering closer to the center (smaller dynamic range,
cf. Figure 3), and workdays located closer at the sphere
borders (bigger dynamic range). This difference between
workdays and weekends is not observed for TS4.

Finally, note in Figure 3 how time-series TS11 and
TS12 exhibit a downtrend behavior during the month,
which can also be observed in the latent-space. Figure
8 depicts the latent representation of time-series TS12,
where days of the month are differentiated by color, from
day 1 in purple to day 31 in yellow. As the month goes
by, the representation in the latent space moves from the
outside borders closer towards the center.

To wrap-up these preliminary evaluations, we observe
how FAE can properly capture and differentiate among
the different temporal behaviors present in the time-series
used for training, suggesting a sufficiently expressive
model and architecture to model a large and heterogeneous
dataset of time-series. In addition, the visual analysis of
the latent representations in FAE evidences how VAEs
– despite their generative nature – are rather transparent
in their operation and behavior, making interpretation
and analysis simpler and more human-friendly. This is
indeed a strong advantage of VAEs as a powerful yet
explainable generative AI model, as compared to modern
generative AI approaches, which operate in a more black-
box manner.

Z
PC3

Z
PC2

Z
PC1

March 1st, 2021

March 31st, 2021

Figure 8. Latent space representation for TS12, in a daily basis – from
day 1 in purple to day 31 in yellow, for the full month of March 2021.

4.3. Zero-shot Modeling Behavior

We investigate now the performance of FAE in a zero-
shot setting, testing the model for time-series not seen
at training time. We focus the analysis on TS12, due to
its combined seasonality and particular temporal trend,
as well as its strong correlated behavior to TS11 (cf.
Figure 3). We train FAE on three different training datasets
from TELCO, using the same 3/1/3-months temporal split
for training/validation/testing, but considering a different
number of time-series TSi. The first model uses all 12
time-series – we refer to it as full-FAE; the second model
considers a zero-shot setting for TS12, with a training
dataset which includes time-series TS1 to TS11, leaving
out all samples from TS12; given the strong temporal
correlation between TS12 to TS11, we also train a third
model leaving out all samples from TS11 and TS12, i.e.,
training on time-series TS1 to TS10. The full FAE model
mimics a situation where we pre-train with a sufficiently
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Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS12}

(a) FAE predictions for TS12, with full-FAE (12 time-series).

Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS11}

(b) FAE predictions for TS12, with FAE trained without TS12.

Time (day of the month, May 2021)

Training data – TELCO {TS1 – TS10}

(c) FAE predictions for TS12, with FAE trained without TS11 and TS12.

Figure 9. Zero-shot modeling experimentation, predicting TS12 for two weeks in the testing dataset (May 2021). (a) FAE is trained on the full, 12
time-series training set – modeling performance is optimal. (b) FAE is trained on 11 time-series, leaving out TS12 – performance remains almost
unchanged. (c) FAE is trained on 10 time-series, leaving out TS11 and TS12 – modeling performance is impacted.

large and heterogeneous dataset which covers the statisti-
cal behavior of the downstream data – i.e., a model that
has seen it all. The other two models mimic two different
levels of zero-shot learning: the former represents a pure
zero-shot setting for TS12, where the pre-trained model
has nevertheless observed a similar statistical behavior in
a different time-series, i.e., TS11 – in particular, it has seen
both the seasonality and the monthly trend behaviors; the
latter represents a more challenging setting, where the pre-
trained model has not seen the monthly trend behavior,
which is not present in TS1 to TS10.

Figure 9 presents the prediction performance of the
three models, when applied to two weeks of TS12 samples,
from May 5 to May 19, 2021. In Figure 9(a), the modeling
performance for full-FAE is optimal, as it can properly
track the different behaviors and patterns in the time-
series, similarly to Figure 4. A similar performance is
observed in Figure 9(b) for the second model, which
learns the characteristics of TS12 at training time, from
TS11. Not surprisingly, the performance of the third model
in Figure 9(c) is significantly worse than for the other two
models, given the lack of a similar temporal pattern in the
training data. To some extent, there is an identification
with the patterns observed in time-series TS1 – note how
the daily sharp peaks are exacerbated – which is coherent
with their close representations in the latent space (cf.
Figure 7(a)). Nevertheless, it somehow manages to capture
and track the monthly downtrend, even without previous
evidence of it.

To conclude, Figure 10 shows the latent representation
of the TS12 test samples for the three FAE pre-trained
models, where colors represent the different days of the

analysis window, going from day 5 in purple to day 19 in
yellow. Full-FAE encoded samples form a sort of cone in
the latent space in Figure 10(a), where the base (purple
and blue) represents the first days of the month and the
tip – pointing towards the center of the latent space –
represents the days towards end of the month. Figure 10(b)
shows a similar cone-shape for the samples encoded by the
second pre-trained model, but this time, the tip of the cone
has moved away from the center. Finally, while Figure
10(c) shows a similar distribution of samples, with yellow
and clearer colors closer to the center and darker ones at
the periphery of the central sphere, the regular cone-shape
observed before is no longer well-defined, evidencing a
different mapping behavior of the model.

5. Discussion and Limitations of FAE

Selecting VAEs for our foundation model exploration
has both benefits and limitations, which we briefly discuss
next. On the benefits side, we have shown how easy it is
to explore and interpret the functioning of the encoding
and the behavior of the encoded time-series in the latent
space, making the model transparent and easy to tame,
particularly for training. While VAEs may struggle with
capturing long-range dependencies in the data, we have
shown how the integration of DCNNs as part of the encod-
ing/decoding networks enables tracking multiple different
temporal behaviors in the time-series, from seasonality to
long-term trends.

FAE shows potential to be a strong foundation model
for time-series analysis, but so far, we have only trained
and tested the model with a single, large-scale dataset
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(a) Full-FAE (12 time-series). (b) FAE trained without TS12. (c) FAE trained without TS11 and TS12.

Figure 10. Latent space representation for TS12, with different FAE pre-trained models. Colors represent the different days of the analysis window,
going from day 5 in purple to day 19 in yellow, for the full month of March 2021.

from a particular domain, and thus still require further
assessment. Indeed, thorough testing and validation would
be necessary to assess FAE’s performance and general-
ization capabilities in different scenarios. Ultimately, the
effectiveness of FAE as a foundation model would depend
on its performance in various real-world scenarios and
its ability to generalize to different datasets and different
domains.

While powerful, VAEs may have limitations in terms
of expressiveness when tasked with learning and mapping
a large-scale number of highly heterogeneous time-series
data. VAEs operate under the assumption of a latent
variable space with a simple distribution, which may not
always capture the intricate and diverse characteristics of
more complex and diverse time-series data.

We note that the performance of FAE in generalization
and zero-shot learning tasks can be affected by factors
such as the complexity of the data, the dimensionality of
the latent space, the choice of the encoder/decoder archi-
tecture, and the quality and diversity of the training data.
Additionally, while VAEs can capture global structure in
the data distribution, they may not always capture fine-
grained details or handle complex data distributions as
effectively as other generative models. Finally, in terms
of scalability, FAE’s performance may degrade with ex-
tremely large datasets or highly heterogeneous data, as the
model complexity may need to increase significantly.

6. Concluding Remarks

We have introduced FAE, a novel approach for time-
series modeling, motivated by the performance realized by
large pre-trained foundation models in different domains.
FAE targets the detection of anomalies in univariate time-
series data, leveraging VAEs and DCNNs to pre-train on
large-scale, heterogeneous time-series datasets, potentially
enabling to properly model and track a baseline for normal
operation, even on unseen datasets.

The preliminary assessment of FAE’s performance has
shown promising results. In particular, we have provided
evidence of FAE’s capabilities to capture and distin-
guish various temporal behaviors within the training time-
series, demonstrating a promising capacity to model large

and heterogeneous datasets effectively. The interpretability
of FAE’s latent representations showcased VAEs’ trans-
parency in operation, facilitating simpler analysis and in-
terpretation compared to black-box generative AI models.

Our exploration extended to the zero-shot learning
scenario, where FAE’s performance on unseen time-series
was assessed. We tested FAE in three settings, ranging
from optimal modeling performance to more challenging
scenarios. While FAE performs properly in tracking differ-
ent behaviors and patterns in the time-series, even in the
absence of previous evidence, there is room for further
improvement, especially in capturing previously unseen
temporal trends.

These initial findings underscore FAE’s potential as a
feasible foundation model for time-series analysis. How-
ever, it is essential to note that our evaluation was limited
to a single large-scale dataset within a specific domain. As
part of our ongoing work, we are focusing on compre-
hensively testing FAE’s performance and generalization
capabilities across diverse scenarios, using much larger
and heterogeneous time-series datasets for training, con-
sidering other domains beyond networking.
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