english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49916 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía González, Gastón-
dc.contributor.authorCasas, Pedro-
dc.contributor.authorMartínez, Emilio-
dc.contributor.authorFernández, Alicia-
dc.date.accessioned2025-05-06T14:55:15Z-
dc.date.available2025-05-06T14:55:15Z-
dc.date.issued2024-
dc.identifier.citationGarcía González, G., Casas, P., Martínez, E. y otros. On the quest for foundation generative-AI models for anomaly detection in time-series data [Preprint]. Publicado en: 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 08-12 jul. 2024, pp. 252-260.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/49916-
dc.description.abstractNetwork security data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series (MTS) process. We investigate a novel approach to time-series modeling, inspired by the successes of large pre-trained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pre-trained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. Based on the DC-VAE architecture originally designed for multivariate anomaly detection, FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts and ideas of this foundation model, and present some preliminary results in a multi-dimensional network monitoring dataset, collected from an operational mobile Internet Service Provider (ISP). This work represents a significant step forward in the development of foundation generative-AI models for anomaly detection in time-series analysis, with applications spanning cybersecurity, network management, and beyond.es
dc.description.sponsorshipEste trabajo ha sido parcialmente financiado por Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – ID887504,y por el proyecto uruguayo CSIC project with reference CSIC-I+D-22520220100371UD Generalization and Domain Adaptation in Time-Series Anomaly Detection.es
dc.format.extent9 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectMultivariate Time-Series Dataes
dc.subjectAnomaly De- tectiones
dc.subjectGenerative AIes
dc.subjectVAEes
dc.subjectFoundation Modelses
dc.titleOn the quest for foundation generative-AI models for anomaly detection in time-series data.es
dc.typePreprintes
dc.contributor.filiacionGarcía González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionCasas Pedro, AIT - Austrian Institute of Technology Vienna, Austria-
dc.contributor.filiacionMartínez Emilio, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionFernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
udelar.academic.departmentProcesamiento de Señaleses
udelar.investigation.groupTratamiento de Imageneses
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
GCMF24a.pdfPreprint1,5 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons