Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/49916
Cómo citar
Título: | On the quest for foundation generative-AI models for anomaly detection in time-series data. |
Autor: | García González, Gastón Casas, Pedro Martínez, Emilio Fernández, Alicia |
Tipo: | Preprint |
Palabras clave: | Multivariate Time-Series Data, Anomaly De- tection, Generative AI, VAE, Foundation Models |
Fecha de publicación: | 2024 |
Resumen: | Network security data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series (MTS) process. We investigate a novel approach to time-series modeling, inspired by the successes of large pre-trained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pre-trained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. Based on the DC-VAE architecture originally designed for multivariate anomaly detection, FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts and ideas of this foundation model, and present some preliminary results in a multi-dimensional network monitoring dataset, collected from an operational mobile Internet Service Provider (ISP). This work represents a significant step forward in the development of foundation generative-AI models for anomaly detection in time-series analysis, with applications spanning cybersecurity, network management, and beyond. |
Financiadores: | Este trabajo ha sido parcialmente financiado por Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – ID887504,y por el proyecto uruguayo CSIC project with reference CSIC-I+D-22520220100371UD Generalization and Domain Adaptation in Time-Series Anomaly Detection. |
Citación: | García González, G., Casas, P., Martínez, E. y otros. On the quest for foundation generative-AI models for anomaly detection in time-series data [Preprint]. Publicado en: 2024 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 08-12 jul. 2024, pp. 252-260. |
Departamento académico: | Procesamiento de Señales |
Grupo de investigación: | Tratamiento de Imagenes |
Licencia: | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
GCMF24a.pdf | Preprint | 1,5 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons