english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49646 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBermolen, Paola-
dc.contributor.authorRossi, Dario-
dc.date.accessioned2025-04-08T16:05:24Z-
dc.date.available2025-04-08T16:05:24Z-
dc.date.issued2008-
dc.identifier.citationBermolen, P. y Rossi, D. Support vector regression for link load prediction [Preprint]. Publicado en: 2008 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks, Venezia, Italy, 13-15 feb. 2008, pp. 268-273. DOI: 10.1109/ITNEWS.2008.4488164.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/49647-
dc.description.abstractFrom weather to networks, forecasting techniques constitute an interesting challenge: rather than giving a faithful description of the current reality, as a looking glass would do, researchers seek crystal-ball models to speculate on the future. This work is the first to explore the use of support vector machines (SVM) for the purpose of link load forecast. SVMs work well in many learning situations, because they generalize to unseen data, and are amenable to continuous and adaptive on-line learning, an extremely desirable property in network environments. Motivated by the encouraging results recently gathered by means of SVM on other networking applications, our aim is to enlighten whether SVM is also successful for the prediction of network links load at short time scales. We consider the problem of link load forecast based only on its past measurements, which is referred to as "embedded process" regression in the SVM lingo, and adopt a hands-on approach to evaluate SVM performance. Our finding is that while SVM robustness is more than satisfactory, accuracy results are just close to be tempting, but not enough to convince. Based on the result of our experimental campaign, we then speculate on what directions can be undertaken to ameliorate the performance of SVM in this context.es
dc.description.sponsorshipEste trabajo fue financiado por el Celtic project TIGER.es
dc.format.extent6 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectSupport vector machineses
dc.subjectLoad forecastinges
dc.subjectTelecommunication traffices
dc.subjectRobustnesses
dc.subjectWeather forecastinges
dc.subjectPredictive modelses
dc.subjectIP networkses
dc.subjectCommunication system traffic controles
dc.subjectSupport vector machine classificationes
dc.subjectCapacity planninges
dc.titleSupport vector regression for link load prediction.es
dc.typePreprintes
dc.contributor.filiacionBermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionRossi Dario, TELECOM ParisTech, France-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)
Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BR08.pdfPreprint485,46 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons