
Support Vector Regression for Link Load Prediction

Paola Bermolen and Dario Rossi – ENST Télécom Paris (France)

firstname.lastname@enst.fr

Abstract— From weather to networks, forecasting techniques
constitute an interesting challenge: rather than giving a faithful
description of the current reality, as a looking glass would do,
researchers seek crystal-ball models to speculate on the future.

This work is the first to explore the use of Support Vector
Machines (SVM) for the purpose of link load forecast. SVMs
work well in many learning situations, because they generalize
to unseen data, and are amenable to continuous and adaptive
on-line learning, an extremely desirable property in network
environments. Motivated by the encouraging results recently
gathered by means of SVM on other networking applications,
our aim is to enlighten whether SVM is also successful for the
prediction of network links load at short time scales.

We consider the problem of link load forecast based only on its
past measurements, which is referred to as “embedded process”
regression in the SVM lingo, and adopt a hands-on approach
to evaluate SVM performance. Our finding is that while SVM
robustness is more than satisfactory, accuracy results are just
close to be tempting, but not enough to convince. Based on the
result of our experimental campaign, we then speculate on what
directions can be undertaken to ameliorate the performance of
SVM in this context.

I. INTRODUCTION

As network services and Internet application evolve, the net-

work traffic is becoming increasingly complex and dynamic.

On the one hand, transport networks are challenged by the

current convergence trend of voice/video/data services on an

all-IP network, and by the fact that user-mobility will likely

translate into service-mobility as well. On the other hand,

the explosion of Internet gaming, telephony and television

applications implies that we may be forced to re-think what

we mean by “data” traffic: the widespread usage of application

layer overlays, directly translates into a much higher variability

of the data traffic injected into the network.

Yet, despite it is widely accepted that the IP best effort

paradigm is inadequate for the development of an effective

multi-service next generation Internet built on sound com-

mercial principles, the take up of QoS architectures (e.g.,

IntServ and DiffServ) has been deceiving with a very limited

deployment. A self-managing network architecture, on which

the management system delegates to the network control plane

part of his tasks, is the key to cope with both the increasing

traffic dynamism and the need for cost-effective solutions.

The fundamental building blocks on top of which such an

architecture can be built are represented by traffic classifica-

tion, measurement and analysis: different actions have to be

triggered depending on the type of traffic by a measurement-

based decision process, aimed at counter the phenomenon that

triggered the reaction in the first place. Generally speaking,

decisions can be based on past snapshots of the system status,

or may forecast the likely system evolution as well.

In this paper, we focus on the evaluation of supervised

forecast techniques based on Support Vector Machines (SVM),

a set of related methods for classification and regression,

introduced in the early nineties [1], that are grounded in the

framework of statistical learning theory. Basically, SVMs use

training data to build a forecast model which works well in

many learning situations because it generalizes to unseen data

and is amenable to continuous and adaptive on-line learning,

an extremely desirable property in network environments.

Initially bound to the optical character recognition context,

the use of SVMs rapidly spread to other fields, including time

series prediction [2] and, more recently, networking [3], [4].

Motivated by such encouraging results, we focus for the

time being on link load forecast based only on past mea-

surements, which is known as “embedded process” [2]. This

problem is of great interest in networking for both capacity

planning and self-management application (e.g., as bandwidth

provisioning, admission control, backpressure mechanism).

Though the SVM approach is well fit to longer time-scales

as well, which are more of a concern for capacity planning,

in this paper we focus on the estimation of load variation

at short time scales, envisaging thus the self-management as

context for its application. Adopting a hands-on approach to

the SVM regression, we evaluate the effectiveness of SVM for

link load forecast by exploring a rather extensive parameter

space. Our aim is twofold: first, we want to evaluate the

SVM accuracy and robustness and, second, we want to provide

useful insights on the tuning of the SVM parameters, an aspect

not always clear in previous work. Our results show that SVM

based models are rather robust to parameter variation, which

constitutes an undoubted positive aspect. However, despite a

good accordance with the actual data, the gain over simple

estimation technique is not entirely satisfactory: thus, the

question which we try to answer is what can be done to

ameliorate the performance of SVM in this context.

II. RELATED WORK

Most of the work related to network load forecast is based

on the analysis of time series properties. On this context,

a number of very different models [5], [6], [7] have been

proposed, ranging from very simple to very complex ones.

However, the majority of these approaches relies on specific

assumptions and underlying models for the network traffic

(e.g., they are tailored to capture Long Range Dependence

(LRD) [8] at short and long timescales, etc.). A first drawback

is that such models will no longer be applicable if the as-

sumption no longer holds (e.g., considering other timescales).

A second drawback is that such models usually rely, beside

fitting on the actual data, on the precise estimation of some

traffic parameters, whose computation can be a very intensive

and delicate task (e.g., Hurst parameter of the arrival time

series).

Rather, as in [9], [10], we prefer to focus on techniques that,

avoiding to make any assumptions on the phenomenon under

observation, allow for intrinsically more robust and flexible

prediction. A simple local Gaussian predictor is provided

in [9] as a core tool to guide the bandwidth provisioning

in the hose model: interestingly, the model is able (but not

forced) to embed assumptions on the LRD properties of

the traffic, by an appropriate tuning of the parameters. TCP

throughput prediction is the object of [10], where authors com-

pare formula-based versus history-based prediction schemes,

showing that even simple moving-average models are able to

yield satisfactory results.

The technique considered in this paper fall into the SV

regression class [11]. Partly due to its relatively short exis-

tence, the network research community has only very recently

[3], [4] started to grasp SVM huge potential. TCP throughput

prediction on a given path is the object of [3]: authors

show that in realistic scenarios, using active probes to collect

the necessary “features” (such as queue size and available

bandwidth), the use of SVM can bring a 60% improvement

over standard technique (predictions error lower than 10%

nearly 50% of the times) with a much lower impact on end-

to-end paths. Authors in [4] focus instead on the prediction

of the latency toward an unknown IP address, based on the

latency knowledge toward other IP addresses: SVM regression

on a large randomly collected data set of 30,000 (IP,latency)

couples, yield a mean prediction error of 30 ms (25 ms) using

only 6% (20%) of the samples for training.

In the context of SVM regression, the problem of forecast

of future values of a series based only on previous observation

of the same phenomenon is done through an “embedding

process” [2]. However, its application has usually targeted

domains other than the networking context, and the series that

SVM has been fed with up to now are very much different

from those representing the packet arrival process at a router

queue: thus, our aim is to test whether SVM can prove to be

a useful tool also for link load forecast.

III. SUPPORT VECTOR MACHINES

A. Overview

Suppose that we are given a training set

{(x1, y1), . . . , (xS , yS)} ⊂ Rd × R, where S is the

training set size and Rd is the space of the input features

xi and yi is the phenomenon under investigation. In ǫ-SV

regression [12] the goal is to find a function f(x) whose

deviation from each target yi is at most ǫ, and at the same

time, is as “flat” as possible. For the sake of clarity, we first

consider the linear case i.e. f : R
d → R,

f(x) = 〈w, x〉 + b, with x ∈ R
d, b ∈ R (1)

where 〈·, ·〉 denote the dot product in Rd. Flatness in the case

of (1) can be ensured by minimizing the norm ‖w‖2 leading

to the following convex optimization problem:

min 1
2‖w‖2 + C

S
∑

i=1

(ξi + ξ∗i)

s.t.







yi − 〈w, xi〉 − b ≤ ǫ + ξ∗i
〈w, xi〉 + b − yi ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

(2)

In the above formulation, slack variables ξi+ξ∗i are included to

cope with otherwise infeasible constraint of the optimization

problem, whereas the constant C > 0 determines the trade off

between the flatness of f and deviations from the target greater

than ǫ. This formulation is equivalent to using the ǫ-insensitive

loss function (3) in the theory of error risk minimization with

regularization:

L(ξ) =

{

0, if |ξ| ≤ ε
|ξ| − ε, otherwise

(3)

Thus, a first SVM peculiarity is rooted in the risk min-

imization theory [12] – where, given an i.i.d. training set,

the aim is to find a function f that minimizes an empirical

risk based on a loss function. Moreover, we stress that the

SVM problem can be seen as an extension of more traditional

regression techniques: for instace, when L(ξ) = |ξ|2 is used as

loss function, then we fall into the case of a minimum square

error regression problem.

B. Support Vectors

The training problem (2) can be solved more easily in

its dual formulation, obtained by constructing a Lagrange

function from the objective and the constraints: indeed, the

dual formulation yield a quadratic optimization problem with

a unique solution, thus avoiding the local minimum problem.

The solution of (2) yield to a model which can be used

to forecast future values. The function f(x) can be written

as a linear combination of the training data, the Lagrange

multipliers αi, α
∗
i , and a constant term b whose computation

stems from the Karush-Kuhn-Tucker (KKT) condition:

f(x) =

n
∑

i=1

(αi − α∗
i)〈xi, x〉 + b (4)

The Lagrange multipliers verifies the constraints
∑n

i=1(αi −
α∗

i) = 0 and αi, α
∗
i ∈ [0, C]. The KKT conditions also implies

that if αi, α
∗
i 6= C and |f(xi) − yi| < ε, then αi, α

∗
i must be

zero. Intuitively, as errors lower than ǫ are tolerated, training-

data lying inside the so called “ε-tube” will not contribute to

the problem solution (nor to its cost). In other words, not all

xi are needed to calculate f(x), but only the SV < S training

points xi whose αi, α
∗
i 6= 0, which are referred to as support

vectors.

C. Kernel Trick

The dual formulation also provides the key to its non linear

extension, which is a second very important peculiarity of

SVM, by means of the so called “kernel trick” [13]. The

idea is to map the input data into a higher-dimensional space

F by a function φ : R
d → F . Then, a linear regression

in this new space F is equivalent to a non-linear regression

in the original space. Observing that 〈x, x′〉 = 〈φ(x), φ(x′)〉
and that the SVR algorithm only depends on the dot product

between the data, it is sufficient to know how to compute

the function k(x, x′) = 〈φ(x), φ(x′)〉 rather than knowing the

mapping function φ(x) explicitly. More formally, a function

k(x, x′) is called a kernel if it corresponds to a dot product in

some feature space F . By restating the optimization problem

in terms of the kernel, it follows that the function f can be

written as:

f(x) =

SV
∑

i=1

(αi − α∗
i)k(xi, x) + b (5)

Interestingly, it can be shown [14] that using a linear kernel

is equivalent to perform an ARMA regression [5], with the

advantages of a simpler fitting procedure and robustness in

presence of outliers. In this work, we use a radial basis

kernel (to which corresponds an infinite dimensional mapping

space), due to the good performance shown in both the specific

time series prediction [14] and more general network [3], [4]

contexts:

k(x, x′) = e−γ‖x−x′‖2

(6)

D. Time series prediction

In the context of SVM regression, there is no a priori restric-

tion on the type and number of features. There is, however,

one special case: whenever future values of a phenomenon are

to be predicted based only on past observation of the same

phenomenon. More formally, we select the SVM features as

done in the embedding process [2] context:

{λ(t), λ(t − τ), . . . , λ(t − (d − 1)τ)} (7)

For what concerns our link load forecast application, λ(t)
represents the average traffic load measured in the time interval

[t − τ, t). More on details, we quantize the time in multiples

of τ : denoting for the ease of notation by λ(t) = λ(kτ) =
λk the average traffic load measured in the time interval

[(k − 1)τ, kτ), the features (7) take the form:

{λk, λk−1, . . . , λk−(d−1)} (8)

In general terms, τ can be though as the timescale of the

observation, the dimension d as the minimum number of state

variables required to describe the system and their product dτ
as the average system memory length.

Usually the above parameters are obtained by running

(computationally intensive) geometric heuristics on input data.

Indeed, our aim being to build a robust engine for the estima-

tion of traffic load on arbitrary timescales, we would rather

have no constraint on the selection of the operation point (d, τ)
– or at least on the operation timescale τ . Therefore, we prefer

to cross-check the impact of the embedding parameters choice

a posteriori, based on the empirical results of the regression,

rather than developing an ad-hoc methods to extract them from

the data we consider: as a side effect of this choice, we will

extend the empirical evaluation of the SVM engine robustness

to a wider range of parameters.

IV. EXPERIMENTAL RESULTS

SVM embedded process regression is affected by many

parameters, pertaining to two different semantic areas: a first

set is related to the SVM regression:

• the training size S and the smoothing factor C of (2);

• the tolerance ǫ of the loss function (3);

• the parameter γ of the kernel function (6);

whereas the second set is related to the embedded process:

• the timescale τ and dimension d of (7);

However, prior to inspect the impact of the above parameters

in the effectiveness of SVM for link load forecast, we need

to provide details on the input data, and to overview the

unsupervised forecast methods that we compare SVM with.

A. History-Based Forecast Methods

The one-step d-order Moving Average (d-MA) predictor can

be defined as:

x̂i+1 =
1

d

i
∑

k=i−d+1

xk (9)

as a general remark, if n is too small the predictor cannot

smooth out the noise in the underlying measurements, whereas

a too large value of n makes it slow to adapt to non-stationarity

properties of the data. The predictor (9) is the simplest among

the unsupervised forecast methods. Yet, in a slightly different

context, [10] shown that, despite its simplicity, d-MA it is

able to provide accurate results provided that it copes with

the two major error sources: Level-Shift and Outliers. We

implement the LSO heuristics as in [10], to which we refer

the reader for further details, and denote with d-LSO the

corresponding predictor: basically, outliers are just ignored,

whereas the detection of level-shift triggers a filter restart

It can be argued that the extreme simplicity of d-LSO will

unfairly bias the comparison. However, we believe that a more

thorough comparison with other, more sophisticated, forecast

techniques will be necessary only whether the SVM engine

is able to provide a significant improvement over simple

techniques, so to justify the burden of its deployment.

Moreover, we point out that we deliberately avoid com-

parison with other, more sophisticated, unsupervised predictor

such as the Local Gaussian Predictor (LGP) of [9], as we

experimentally verified that in the short timescales considered

in this paper they systematically overestimate the incoming

traffic rate. While in some application this is actually a

desirable feature (e.g., as in VPN bandwidth provisioning,

where over-provisioning translate in fewer losses and thus in a

greater service QoS), in many other context it is not (e.g., when

admission control is performed, over-estimating the incoming

load unjustifiably increases the flow reject ratio).

For the time being, out aim is thus to evaluate the accuracy

of the prediction, without introducing any a priori “preference”

toward a specific type of error (i.e., over- or under- estimation),

as this would implicitly mean to focus on a specific application

(i.e., bandwidth provisioning and admission control respec-

tively).

 50
 100
 150
 200

0k 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

L
in

k
 L

o
ad

 [
M

b
p

s]

τ=
1
m

s

 50

 100

 150

 200

τ=
2
m

s

 50

 100

 150

 200

τ=
4
m

s

 75

 100

 125

 150

τ=
1

0
2

4
m

s

...

Fig. 1. Subset choice at different timescales (daily dataset)

TABLE I

INPUT TRACE: LINK LOAD AT DIFFERENT TIMESCALES

i 0 2 4 6 8 10

D µ [Mbps] 116.4 118.3 120.4 119.5 118.9 121.3
σ [Mbps] 28.9 20.7 16.4 12.7 10.3 7.9

N µ [Mbps] 60.8 62.4 68.1 69.6 68.2 66.2
σ [Mbps] 32.6 21.2 15.4 9.6 6.8 8.7

B. Input Data

To benchmark the effectiveness of the SVM for traffic

load forecast, we collect the traffic at the POP of a major

Italian ISP. This dataset is very peculiar, since it refers to

an innovative ISP which is providing end users (residential,

SOHO or large companies) with data, voice and video over IP

by means of either an ADSL or a FTTH link (no PSTN link is

offered). Traffic is therefore composed of data transfers over

TCP, VoIP and VideoIP traffic over RTP/UDP. Moreover, as

users make extensive use of P2P applications, VPN services,

etc., the resulting traffic mix is therefore very heterogeneous.

We sniffed a one-day long trace on Monday the 15th of May

2007, and consider a single traffic direction. We then extracted

several N = 10000 second long (about 2h45) subsets of the

trace: here, we report results referring to a daily-busy subset

and nightly-idle periods. In the daily subset (D), average link

load is 122.5 Mbps whereas in the nightly subset (N), average

load was 65.4 Mbps. For each subset, we consider different

timescales τi = 2i ms with i ∈ [0, 10], and for the sake of

brevity, in the description we approximate τ10 = 1024 ms

with τ = 1 s. We then compute the average arrival rate,

building N elements long datasets: details relative to the mean

and standard deviation of the load at different timescales are

reported in Tab. I for even values of i: it can be clearly seen

that the lower the timescale, the higher the load variance. The

partitioning criterion for different timescales is depicted in

Fig. 1: the subset for the (k-1)-th timescale corresponds to

the central portion of the k-th one.

The daily and nightly datasets present an interesting differ-

ence. Fig. 2 depicts the autocorrelation function of the load at

timescale τ = 1 s: the peak of the busy trace exhibit a periodic

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

A
C

F

Trace Sample, τ=1024 ms

Daily
Nightly

Fig. 2. Autocorrelation function of the Daily and Nightly trace datasets

fluctuation on the range of 5 s (and multiples of 5 s) which is

absent in the nightly trace. Clearly, this dependence will affect

any 5-lag samples when τ = 1s (i.e., λk and λk−5) and more

generally any two samples that are 5τi seconds apart.

C. SVM Parameter Tuning

To tune the performance of the SVM, we start by selecting

the combination (C∗, ǫ∗, γ∗) of SVM parameters that mini-

mize the root square mean error (RSME) of the prediction,

which assess the quality of the estimator in terms of its varia-

tion and unbiasedness, where RMSE =
√

∑n
i (yi − ŷi)2/n.

Results shown in this section were gathered using the

JMySVM implementation of the Rapidminer tool [15].

Fixing d = 5 and τ = 1 s, we selected 20% of the dataset

at random for training the SVM, and tested the prediction

accuracy for the remaining 80% of the set. We sampled 10

values for each of the SVM parameters, for a total of 1000

combinations. To select the boundary of the parameter space to

be explored, we apply the following reasoning. A prescription

for the regularization parameter C follows from (5): if we

consider that, |αi − α∗
i | ≤ C and |k(xi, xj)| ≤ 1, we have

that |f(x)| ≤ SV C, which yield to C ≤ |f(x)|/SV . While

for |f(x)| a reasonable choice is max(|y+3σy|, |y−3σy|) (to

avoid outliers influence), since the number of support vector

cannot be known a priori we consider the boundary cases

where either i) all training data are support vectors SV = S,

or ii) only a single data point is a support vector SV = 1.

About ǫ, it is suggested in [16] that it should be proportional

to the input noise level: however, as the definition of link load

“noise” is questionable, we are forced to resort to an empirical

choice – and we proceed similarly for γ.

The grid optimization process for the busy trace, which

yielded to a minimum RMSE=5.88 when (C∗, ǫ∗, γ∗) =
(30, 5, 0.05), is depicted in Fig. 3. The picture show the whole

(C, ǫ, γ) parameter set explored, conditioning over each of

the three parameters. For the sake of clarity, let consider the

leftmost plot of Fig. 3, whose x-axis represent the C parameter

values. Each point in the plot represent a single experiment,

and for any value of the C parameter on the x-axis, 100 points

 6

 6.5

 7

 7.5

 8

 0.1 1 10 100

R
S

M
E

C

C
*

 0.01 0.1 1 10

γ

γ
*

 2 4 6 8 10

ε

ε
*

Fig. 3. Grid optimization process for the selection of (C∗, ǫ∗, γ∗)

are plotted that correspond to the 100 combination of the other

two parameters ǫ and γ. The plot also reports some reference

lines: the vertical thin line refers to the best value C∗; the

dotted thick line represents, for any given C, the average of

the RMSE achieved for the 100 possible combination of ǫ and

γ; the solid thick line refers instead to the RMSE achieved as

a function of C when the other parameters are set to their best

values (i.e., ǫ∗ and γ∗). From the Fig. 3, it can be gathered

respectively that i) as the RMSE is convex in C, the value of C
should be neither too big nor too small, ii) the prediction error

exhibit a (roughly exponential) increase with γ value, and ii)

that the impact of ǫ is less significant with respect to C and γ.

A similar operation on the nightly trace yielded to a different

best combination of parameters, namely (25, 0.1, 0.01), that

we will therefore use for the nightly subset. At the same

time, the daily parameters (C∗, ǫ∗, γ∗) ranked 50th in the night

trace, with an RMSE increase of 4%: thus, even in extremely

different load conditions, the SVM prediction is rather robust

to the parameter choice.

Next, we explore the impact of the training set size on

the accuracy of the prediction. For different sizes S of the

training set, we perform the so-called “cross validation”: we

build a training set with randomly chosen S data within the N
dataset samples, and evaluate the prediction accuracy over the

remaining N−S samples. The process is repeated S times for

each value of S, changing the training and evaluation set every

time, and RMSE results are reported in Fig. 4 as a function

of the training size S (top x-axis) and ratio S/N (bottom x-

axis). Three regions are clearly distinguishable: whenever the

number of samples is exiguous, the SVM is under-trained and

prediction error is large; afterwards, SVM rapidly learns and

the error quickly drops until the SVM is over-trained and

the error slightly increases. In our situation, in the learning

zone S/N ∈ [1/16, 1/4] the RMSE stays constant, and no

further learning improvement is observed for S > 625. This is

symptomatic of a situation in which the SVM is not effectively

learning the structure of the time series: intuitively, what

happens is that a few samples are enough (provided that they

span the range of values achieved by the time series) to learn

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

1/128 1/64 1/32 1/16 1/8 1/4 1/2

78 156 312 625 1250 2500 5000

R
M

S
E

Training set ratio S/N

Training set size S/N

Fig. 4. Impact of training size on prediction accuracy

the series average. Moreover, as the contribution of the b term

of (5) is prominent and very close to the average of the time

series, the support vector contribution is not as significant as

it should be in a proper learning situation: the prediction will

then fluctuate around the average, much as in the case of a

simple moving average – thus, we cannot unfortunately expect

significant accuracy improvements over d-MA. This is also

reflected in the number of support vectors, which is always

very close to the training size SV ≃ S. Its clear that the

number of SV decreases if the parameter ǫ increases and this

can be done without much cost in the RMSE. This fact also

affect the forecast complexity, as the number of computations

that have to be performed for each forecast operation depends

on the number of support vectors.

D. Embedded Parameter Impact

In this section, we explore the impact of the embedding

parameters d and τ in the prediction accuracy of SVM

versus d-MA. As a first remark, results are different, though

quantitatively very close: in other words, SVM does not exhibit

a significant improvement over d-MA. Nevertheless, let us in-

vestigate more closely the impact of the number d of previous

samples, which is depicted in Fig. 5 for both nightly (right)

and daily (left) periods at the τ = 1 s timescale. Considering

the nightly period, it can be seen that, the knowledge of a

few elements is useful for the d-MA prediction, as long as

the number of previous observation is small; indeed, when

d > 5 the d-MA filter is averaging not useful information

worsening its accuracy. At the same time, while the d-LSO

limit the error for high values of d, it may actually worsen

the accuracy at low values of d (and is furthermore sensitive

to its parameter tuning). Conversely, the SVM is naturally

robust even to unreasonable choices of d, which means that

the SVM its unable to learn from the new features but also

that this new features does not degrade its performance. In

the daily period case the d-MA resent much of the periodical

fluctuation: intuitively, the error is minimum whenever the

forecast is exactly a multiple of the periodical lag (indeed,

for d = 5 samples, two of them thus 2/5 are correlated, while

 5.5

 6

 6.5

 7

 7.5

 5 10 15 20 25 30

R
M

S
E

Number of previous samples (d)

Daily period

SVM
d-MA

d-LSO

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 5 10 15 20 25 30

Nightly period

Fig. 5. Impact of the number d of previous samples on the forecast accuracy

for d = 6 only 2/6 are correlated, and so on) and grows in

between two multiples. Interestingly, the LSO heuristic is not

helpful in this case (as in this case the periodic fluctuation

may be seen as a level shift and thus disregarded), while the

robustness of SVM is preserved. Finally, setting d = 5 (thus,

the best case for the d-MA filter but not for the SVM), we

investigate whether SVM forecast bring any improvement at

short time-scales. Fig. 6 depicts the prediction RMSE as a

function of τ for the nightly period only: behavior of both

predictors is similar, with short time scales constituting a stiffer

scenario, as it can be expected in reason of the much higher

traffic variability shown early Tab. I. The picture also report the

RMSE difference of the two forecast techniques, from which it

can be gathered that at shorter time-scales, SVM brings about

a 10% improvement over d-MA.

V. DISCUSSION AND CONCLUSION

This paper is the first to explore the SVM regression mech-

anism for the purpose of link load forecast: using a hands-on

approach, we tuned the SVM performance, comparing them

with those of a simple moving average based technique. Our

result shown that SVM based models are rather robust of SVM

to parameter variation, which constitutes an undoubted positive

aspect. At the same time, the gain over simple prediction

methods is not enough to justify its deployment for link load

prediction at short time scales. It is our belief that this work

constitute a starting point for further investigation, whose

directions are highlighted in the following. First, the gathered

results raise a question about what can be done to ameliorate

the performance of SVM at short time scales. Undoubtedly, the

features considered by the embedded process regression alone,

cannot provide the needed accuracy that SVM need in order

to challenge more reliable methods such as [6], [7]. An open

issue is whether and what manipulation of the time series (e.g.,

such as differentiae) can bring some enhancement, and also

what are the additional features that could be worth feeding

the SVM with (e.g., statistical properties of the time series, the

number of active flows, the load breakdown by transport layer

protocols, etc.). Another open issue is whether the use of other

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64 128 256 512 1024
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

R
M

S
E

(S
V

M
 -

 d
-M

A
)

R
M

S
E

 D
if

fe
re

n
ce

Timescale (τ)

Nightly Period

RMSE difference
SVM

d-MA

Fig. 6. Impact of the timescale τ on the forecast accuracy

kernels (e.g., multilineal or other that can take into account

the characteristics of the time series) could also ameliorate

the SVM accuracy. Also, provided that SVM performance

were good enough to justify its use, the knowledge of the

forecast confidence interval would be extremely useful. As

final remark, we point out that SVM may be more suitable

on longer timescale: indeed, considering, e.g., time-of-day and

day-of-week features it should be surprisingly easy to forecast

periodic load fluctuations (e.g., lunch breaks and week-ends).

ACKNOWLEDGEMENT

This work was funded by the Celtic project TIGER.

REFERENCES

[1] B. E. Boser, et al. “A training algorithm for optimal margin classifiers”.
ACM COLT’92, pp. 144–152, Pittsburgh, PA, 1992

[2] K.-R. Muller, at al. “Predicting time series with support vector ma-
chines,” In Artificial Neural Networks Springer, Berlin, 1999

[3] M. Mirza, et al. “A machine learning approach to TCP throughput
prediction,” In ACM SIGMETRICS’07, San Diego, CA, Jun. 2007,

[4] R. Beverly, et al. “SVM Learning of IP Address Structure for Latency
Prediction,” In ACM MineNet’06, Pisa, Italy, Sep. 2006

[5] P.J.Brockwell et al., “Introduction to time series and forecasting,”
Springer, Berlin, 1996

[6] J. Beran, “Statistics for Long-memory Processes,” Chapman & Hall,
London, 1994

[7] B. Krithikaivasan et al., “ARCH-based Traffic Forecasting and Dynamic
Bandwidth Provisioning for Periodically Measured Nonstationary Traf-
fic,” IEEE/ACM Transaction on Networking, June 2007.

[8] W. E. Leland, et al. Similar Nature of Ethernet Traffic,” IEEE Transac-

tions on Networking, Vol. 2, No. 1, pp. 1–15, 1994.
[9] N.G.Duffield, et al. “Resource management with hoses: point to cloud

services for virtual private network,” IEEE/ACM Transactions on Net-

working, Vol.10, No. 5, Oct. 2002.
[10] Q. He et al. “ On the predictability of large transfer TCP throughput”,

ACM SIGCOMM’05, Philadelphia, USA, Aug 2005
[11] A.J.Smola, et al. “A tutorial on support vector regression” In Statistics

and Computing, Vol. 14, pp. 199–222, Kluwer Academic Pub., 2004.
[12] V.Vapnik, “The nature of statistical learning theory,” Springer, NY, 1995.
[13] M. Aizerman et al. “Theoretical foundations of the potential function

method in pattern recognition learning,” Automation and Remote

Control, Vol. 25, pp. 821-837, 1964
[14] S. Ruping at al. “Support Vector Machines and Learning about Time,”,

ICASSP’03, Hong Kong 2003.
[15] I. Mierwa et al. “YALE: rapid prototyping for complex data mining

task,” ACM SIGKDD’06, Philadelphia, PA, USA, 2006
[16] V. Cherkassky et al. “Practical Selection of SVM Parameters and Noise

Estimation for SVM Regression,” Neural Networks, Jan. 2004

