english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/49637 Cómo citar
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBermolen, Paola-
dc.contributor.authorMellia, Marco-
dc.contributor.authorMeo, Michela-
dc.contributor.authorRossi, Dario-
dc.contributor.authorValenti, Silvio-
dc.date.accessioned2025-04-07T17:33:34Z-
dc.date.available2025-04-07T17:33:34Z-
dc.date.issued2011-
dc.identifier.citationBermolen, P., Mellia, M., Meo, M. y otros. Abacus : Accurate behavioral classification of P2P-TV traffic" [Preprint]. Publicado en: Computer Networks, 2011, vol. 55, no. 6, pp. 1394-1411. DOI: 10.1016/j.comnet.2010.12.004.es
dc.identifier.urihttps://hdl.handle.net/20.500.12008/49637-
dc.description.abstractPeer-to-Peer streaming (P2P-TV) applications offer the capability to watch real time video over the Internet at low cost. Some applications have started to become popular, raising the concern of Network Operators that fear the large amount of traffic they might generate. Unfortunately, most of P2P-TV applications are based on proprietary and unknown protocols, and this makes the detection of such traffic challenging per se. In this paper, we propose a novel methodology to accurately classify P2P-TV traffic and to identify the specific P2P-TV application which generated it. Our proposal relies only on the count of packets and bytes exchanged among peers during small time-windows: the rationale is that these two counts convey a wealth of useful information, concerning several aspects of the application and its inner workings, such as signaling activities and video chunk size. Our classification framework, which uses Support Vector Machines, accurately identifies P2P-TV traffic as well as traffic that is generated by other kinds of applications, so that the number of false classification events is negligible. By means of a large experimental campaign, which uses both testbed and real network traffic, we show that it is actually possible to reliably discriminate between different P2P-TV applications by simply counting packets.es
dc.description.sponsorshipEste trabajo fue financiado por la UE a través del Proyecto Colaborativo del FP7 ‘‘Network-Aware P2P-TV Applications over Wise-Networks’’ (NAPAWINE).es
dc.format.extent18 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenes
dc.rightsLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)es
dc.subjectTraffic classificationes
dc.subjectSupport Vector Machinees
dc.subjectP2P live-streaminges
dc.titleAbacus: Accurate behavioral classification of P2P-TV traffic.es
dc.typePreprintes
dc.contributor.filiacionBermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería.-
dc.contributor.filiacionMellia Marco, Politecnico di Torino, Italy-
dc.contributor.filiacionMeo Michela, Politecnico di Torino, Italy-
dc.contributor.filiacionRossi Dario, TELECOM ParisTech, France-
dc.contributor.filiacionValenti Silvio, TELECOM ParisTech, France-
dc.rights.licenceLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)es
Aparece en las colecciones: Publicaciones académicas y científicas - IMERL (Instituto de Matemática y Estadística Rafael Laguardia)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
BMMRV11.pdf561,54 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons