
Computer Networks 55 (2011) 1394–1411
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Abacus: Accurate behavioral classification of P2P-TV traffic

Paola Bermolen a, Marco Mellia b, Michela Meo b, Dario Rossi a, Silvio Valenti a,⇑
a TELECOM ParisTech, 46 rue Barrault, 75634 Paris, France
b Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 April 2010
Received in revised form 17 September 2010
Accepted 11 December 2010
Available online 30 December 2010
Responsible Editor: I.F. Akyildiz

Keywords:
Traffic classification
Support Vector Machine
P2P live-streaming
1389-1286/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.comnet.2010.12.004

⇑ Corresponding author. Tel.: +33 1 4581 7275; fa
E-mail addresses: paola.bermolen@telecom-paris

mellia@tlc.polito.it (M. Mellia), meo@tlc.polito.it (M
telecom-paristech.fr (D. Rossi), silvio.valenti@en
telecom-paristech.fr (S. Valenti).
Peer-to-Peer streaming (P2P-TV) applications offer the capability to watch real time video
over the Internet at low cost. Some applications have started to become popular, raising the
concern of Network Operators that fear the large amount of traffic they might generate.
Unfortunately, most of P2P-TV applications are based on proprietary and unknown proto-
cols, and this makes the detection of such traffic challenging per se. In this paper, we pro-
pose a novel methodology to accurately classify P2P-TV traffic and to identify the specific
P2P-TV application which generated it. Our proposal relies only on the count of packets and
bytes exchanged among peers during small time-windows: the rationale is that these two
counts convey a wealth of useful information, concerning several aspects of the application
and its inner workings, such as signaling activities and video chunk size.

Our classification framework, which uses Support Vector Machines, accurately identifies
P2P-TV traffic as well as traffic that is generated by other kinds of applications, so that the
number of false classification events is negligible. By means of a large experimental cam-
paign, which uses both testbed and real network traffic, we show that it is actually possible
to reliably discriminate between different P2P-TV applications by simply counting packets.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction called chunks, which are then sent to a few other peers,
The Internet has proven to have an awesome capability
of adapting to new services, migrating from the initial pure
datagram paradigm to a real multi-service infrastructure.
One of the most recent step of this evolution is P2P-TV,
i.e., large-scale real-time video-streaming services exploit-
ing the peer-to-peer communication paradigm. There are
several currently deployed P2P-TV systems [1–4], which
feature low-quality and low-bitrate streaming, with high-
quality systems just beyond the corner. In P2P-TV systems,
hosts running the application, called peers, form an overlay
topology by setting up virtual links over which information
is transmitted and received. A source peer injects the video
stream, by chopping it into data units of a few kilobytes,
. All rights reserved.
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called neighbors. Each peer contributes to the video diffu-
sion process by retransmitting chunks to its neighbors fol-
lowing a swarming-like behavior, somehow inspired to file
sharing P2P systems like BitTorrent.

P2P-TV systems are candidates for becoming the next
Internet killer application as testified by the growing suc-
cess of commercial systems (such as PPLive, SopCast,
TVAnts and many others) which already attract millions
of users every day [5]. Also, Cisco estimates that, globally,
P2P-TV traffic is now over 280 petabytes per month [6],
and is projected to increase further over the next year. As
a consequence, P2P-TV systems gathered the attention of
the research community, interested in understanding their
behavior and improve their performance, while the Inter-
net Service Providers (ISP) community have raised some
concerns about them. Indeed, P2P-TV traffic may poten-
tially grow without control, causing a degradation of qual-
ity of service perceived by Internet users or even the
network collapse [7]. In fact while the downlink rate of
peers is limited by the video stream rate, the uplink rate
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1 Joost became a web-based application in October 2008, but at the time
when the experiments were performed it offered VoD and live-streaming
by P2P.

2 Note that while frames are the typical unit of data generated by video
encoders, the segmentation in chunks is instead imposed by the P2P
application and is typically independent from the codec.
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may grow unbounded as observed in [5]. Unfortunately,
most successful P2P-TV systems follow a closed and pro-
prietary design, so the algorithms and protocols they adopt
are unknown.

As such, the identification of P2P-TV applications is a to-
pic of growing interest. For instance, ISPs can be interested
in blocking application A and at the same time explicitly
supporting application B, because the ISP itself provides a
service relying on B. In a similar way, an operator could
be forced to block the traffic of an application for some
infringements (e.g., copyright), while still protecting the
traffic of the application used by other broadcasters. More
possible uses of P2P-TV application classification can be
found in the field of network monitoring (e.g., ranking
applications according to their popularity), security (block-
ing a given application which is exploited for DDoS attacks
or worm diffusion) and charging. We think that, with the
growing diffusion of P2P-TV applications, ISPs will soon
be asking for tools enabling this kind of activities.

However, despite much valuable effort has already been
devoted to the task of Internet traffic classification [8–19],
P2P-TV traffic identification has only been partially ad-
dressed by payload-based mechanisms [11]. Among the
different classification methodologies, a very promising
one is the so called ‘‘behavioral’’ approach [18,19]. Behav-
ioral classification aims at identifying the traffic by the sole
examination of transport-layer traffic patterns, and is very
lightweight as it does not require neither packet-payload
inspection nor per-packet operation. However, behavioral
classification has so far achieved only coarse-grained clas-
sification of Internet applications, identifying broad appli-
cation classes (e.g., interactive, P2P, Web, etc.) rather than
discriminating different applications within the same class.
Thus, the design of a fine-grained classification engine that
only exploits behavioral characteristics remains, to date, an
open problem.

In this work, we tackle precisely this issue by designing a
novel behavioral classification framework, tailored for P2P-
TV applications, which is able to achieve fine-grained clas-
sification (i.e., distinguish among applications). Our frame-
work, which was described in a preliminary version in [20],
uses simple application signatures gathered from the count
of packets and bytes that peers exchange during small time
windows. To validate the proposed classification engine, we
carry out a thorough experimental campaign using both
testbed traces and passive measurements collected from
real networks. We consider four P2P-TV applications,
chosen for their popularity among the large number of
available ones. Our results show that the percentage of cor-
rectly classified traffic is above 95% of bytes. Moreover, the
engine correctly labels as ‘‘unknown’’ the traffic generated
by non P2P-TV applications, keeping the false positive rate
(i.e., wrong classification of non P2P-TV traffic as such) be-
low 0.1% in the worst case.

The rest of this paper is organized as follows. Section 2
defines the application signatures and describes the classi-
fication framework, providing justification of its founding
rationale. Section 3 thoroughly describes the workflow,
methodology and datasets used to validate the classifica-
tion engine. Section 4 then illustrates baseline classifica-
tion results, providing an extensive study of the signature
portability, to show that the proposed technique works
in rather different network environments. A careful sensi-
tivity and robustness analysis of the method to internal
parameters is reported in Section 5. Afterwards, we show
in Section 6 that an extended signature definition can fur-
ther improve the classification accuracy. Finally, Section 7
overviews related works and Section 8 concludes the
paper, summarizing the main messages and illustrating
future research directions.
2. Classification framework

2.1. The rationale

Our aim is to classify P2P-TV end-points, which can be
identified by IP address and transport layer port pair (IP,
port). Typically, P2P-TV applications rely on UDP as the
transport protocol. During installation, a single UDP port
is selected at random, over which all the signaling and vi-
deo traffic exchanged with other peers is multiplexed.
Therefore, all the traffic going to/coming from a given (IP,
UDP-port) end-point is actually destined to/sourced from
the same P2P-TV application running on the host. This
holds true for P2P-TV applications like PPLive [1], SopCast
[2], TVAnts [3] and Joost [4],1 which we take as examples
throughout this paper. Because of the continuous develop-
ment of new applications, the choice of a representative
set is definitely a difficult one. We decided to use the most
popular applications at the time of experiments.

As mentioned before, we design a P2P-TV classification
methodology that relies only on the evaluation of the
amount of information, such as packets and bytes, ex-
changed by peers during small time-windows. The ratio-
nale is that a raw count of exchanged data conveys
useful information concerning several aspects of P2P-TV
applications.

A human analogy may help in clarifying the intuition.
Suppose peers in the network are people in a party room:
people generally have different behavior, e.g., they will be
more or less talkative. As such, somebody may prefer
lengthy talks with a few other people, whereas somebody
else may prefer very brief exchanges with a lot of people.
This is similar to what happens with P2P applications:
some applications continuously perform peer discovery
by sending few packets to a previously not-contacted peer;
others tend to keep exchanging most of packets with the
same peers.

Additionally, most P2P-TV applications have been de-
signed around the concept of ‘‘chunks’’ of video, i.e., small
units of information whose size is a typical parameter of
each application.2 Download of video content is thus
performed using several chunks, and the size of flows carry-
ing the video content is roughly a multiple of the chunk size.
Moreover, P2P-TV video service has an almost constant
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downlink throughput, due to the nature of the video stream.
By tracking the breakdown between the different contribu-
tors it is possible to highlight different policies that a partic-
ular application can adopt, namely, fetching chunks from
many neighbors, or downloading from a restricted list of
preferential peers. Yet, while any P2P-TV peer consumes
equally, the amount of uploaded data can be significantly
different from peer to peer, due to different configuration,
such as upload capacity. For example, in [5], it is shown that
uplink to downlink throughput ratio for PPLive varies in the
[0,10] Mbps range, for the same downlink throughput of
about 400 Kbps. In reason of the above observation, we as-
sume that the classifier is located at the edge of the network
(where all traffic exchanged by a given end-point transits),
and consider only the downlink direction, i.e., traffic coming
from the Internet and crossing the edge of the network into
the end-point direction. Notice that once an endpoint has
been identified by means of downlink traffic, the uplink traf-
fic is classified as well. However, the additional use of the
characteristics of the uplink traffic to support the classifica-
tion represents an interesting direction for future work.

In the following, we restrict our attention to UDP traffic,
although endpoint identification can be extended to appli-
cations relying on TCP at the transport layer as well. In case
TCP is used, the client TCP port is ephemeral, i.e., randomly
selected by the Operating System for each TCP connection.
The TCP case thus requires more complex algorithms in
case of traffic generated from a specific peer, since ephem-
eral ports differ among flows generated by the same peer.
However, we point out that the ephemeral port problem
vanishes if we focus on the downlink direction as we do
in this work (i.e., since we need in this case to aggregate
all traffic received by a TCP server port, that remains the
same for all flows of any given peer).

2.2. Behavioral P2P-TV signatures

Let us consider the traffic received by an arbitrary end-
point P ¼ ðIP; portÞ during an interval of duration DT. We
evaluate the amount of information received by P simply
as the number of received packets. In Section 6 we extend
this concept to account also for the amount of bytes, which
we will show to further improve classification performance.

We partition the space N of the possible number of
packets sent to P by another peer into Bn + 1 bins of expo-
nential-size with base 2: I0 = (0,1], Ii = (2i�1, 2i] for
i = 1, . . . ,Bn�1 and IBn ¼ ð2

Bn�1;1�. For each DT interval, we
count the number Niof peers that sent to P a number of
packets n 2 Ii; i.e., N0 counts the number of peers that sent
exactly 1 packet to P during DT; N1 counts the number of
peers that sent two packets; N2 the number of peers that
sent 3 or 4 packets and, finally, NBn is equal to the number
of peers that sent at least 2Bn�1 þ 1 packets to P. Let K de-
note the total number of peers that contacted P in the
interval. The behavioral signature is then defined as
n ¼ ðn0; . . . ;nBn Þ 2 RBnþ1, where:

ni ¼
NiPBn
j¼0Nj

¼ Ni

K
: ð1Þ

The signature n is the observed probability mass function
(pmf) of the number of peers that sent a given number of
packets to P in a time interval of duration DT; this function
is discretized according to the exponential bins described
above. The choice of exponential width bins reduces the
size of the signature, while keeping the most significant
information that can be provided by the pmf. In fact, since
low order bins are much finer, short flows are likely to end
up in different bins, even though the difference in their
counts is small (e.g. flows composed by a single packet,
two packets and three packets are counted respectively
in the components n0, n1 and n2). On the contrary, longer
flows are coarsely grouped together in the higher bins.
Intuitively, having a finer characterization of short flows
can provide much information (e.g., distinguishing be-
tween single-packet probes versus short signaling ex-
changes spanning several packets), while there is no gain
in having an extreme accuracy when considering long
flows (e.g., distinguishing between 500 or 501 packet long
flows). This intuition is discussed in Section 5, where we
examine the impact of different binning strategies.

Since n has been derived from the pure count of ex-
changed packets, we name it ‘‘Abacus’’, which is also a
shorthand for ‘‘Automated Behavioral Application Classifi-
cation Using Signatures’’. Before describing the whole
classification process, let us show the expressiveness of
the Abacus signatures, by presenting a few examples.

In Fig. 1(a) we show an example of temporal evolution
of the signature n for each of the four applications we
consider in this paper (from left to right, Joost, SopCast,
TVAnts and PPLive). Each plot is built by running a single
application on a controlled peer for an hour and capturing
the received packets. Then we process this traffic and com-
pute a signature n for each interval DT = 5 s. Each graph has
the time on the x-axis, while on the y-axis it is reported the
value of each components ni. Each component is repre-
sented with a shaded area of a particular level of gray (with
darker colors corresponding to low-order components, and
lighter ones to high-order components). Moreover the
components are staggered one above the others, so that
n0, the darkest component, extends from 0 to n0, while n1

extends from n0 to n0 + n1 and so on. Clearly, as the overall
signature is itself a pmf, the sum of all components is equal
to 1.

Each application has its own characteristic distribution,
which is extremely different from the others. The most
probable bin (i.e. the one which exhibits the highest values
for most of the intervals DT) is highlighted in the figure,
showing that it is different for each application. Interest-
ingly, the most probable bin remains the same during most
of the application lifetime, despite its actual width varies
over time. Notice that the breakdown is not stationary over
time for all applications: this is for instance the case of
PPLive, as it emerges from the rightmost plot of Fig. 1(a),
which hints to transient or possibly ‘‘multi modal’’ behav-
iors. The dark vertical line toward the end of PPLive exper-
iment corresponds to a sudden massive increase of n0, due
to a 10-s long blackout period (i.e. two DT intervals), where
the end-point under observation was essentially receiving
single-packet probes, and likely no video chunks.

To better highlight how Abacus signatures capture the
differences between applications, we have computed the
average of each single signature component ni over all
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the intervals represented in Fig. 1(a), and reported it in the
histograms of Fig. 1(b). Bin identifier i is reported on the x-
axis, with top x-axis showing the maximum number of
packets within the bin. Interesting behaviors stand out
from the picture. For instance, Joost peers preferentially
receive either a single or several (32,64] packets from
any given peer. SopCast instead prefers middle-sized burst
of (5,16] packets, while TVAnts prefers lower order bins
(2,7] packets. Finally, PPLive highly prefers single packet
exchanges. This confirms that different P2P-TV applica-
tions have remarkably different behaviors, just like
humans at a party: in the next sections, we exploit this evi-
dence for classification purpose. Obviously if two applica-
tions employ the same signaling and diffusion
algorithms, they are characterized by a similar behavior
and, thus, hardly recognizable. Under these assumptions,
a fine-grained classification is no longer possible. Notice
that this is a common problem with all classification
methodologies: as far as the features are the same, the
classifier is confused. For example, traditional deep-pack-
et-inspection (DPI) classifiers cannot distinguish two VoIP
applications relying on the same protocol at the session
level, e.g., RTP. Similarly, behavioral classifier that use
packet size and inter-packet-gap as features cannot distin-
guish VoIP applications that use the same Codec.
3. Methodology and dataset

Classification of P2P-TV traffic can be performed by
exploiting the Abacus signatures so far described through
any supervised learning machine. In this work, we resort
to Support Vector Machines (SVM), which are well known
for their discriminative power in both the learning ma-
chine community [21], and have more recently peered in
the Internet traffic classification literature as well [22].
Specifically, we make use of LibSVM implementation [23]
of SVM. Since providing a through overview of SVM is be-
yond the scope of this paper, we invite the reader to go
through [21,22] for further details concerning SVM. In this
section, we describe the workflow we follow in the evalu-
ation, as well as describe the dataset used for our experi-
mental campaign.

3.1. Workflow overview

From a high-level perspective, the P2P-TV classification
workflow consists of three phases: the training phase,
whose output is a model that can be used for the classifica-
tion phase. A third phase is needed to validate the classifi-
cation results against a reference ground truth. In what
follows, we detail and explain the workflow with the help
of Fig. 2.

In the context of SVM, entities to be classified are repre-
sented by means of some distinctive features, which in our
case are the Abacus signatures computed on real traffic.
Since SVM is supervised algorithm, the machine must be
trained first; this process is illustrated in the top part of
Fig. 2. During the training phase, the machine is fed some
samples Abacus signatures, with the associated labels that
specify the generating P2P-TV applications. Notice that
preliminary to this process, an oracle (e.g. DPI) is used to
associate the protocol label to the traffic signatures. Oracle
labels are considered accurate, thus representing the
ground truth of the classification. In our case, using the test-
bed traces described later in this section, we generate la-
beled signatures of known P2P-TV applications:
specifically, for each trace, we build an Abacus signature
n every interval of DT seconds. Each signature is then pos-
sibly chosen, at random, to be included in the training set:
impact of training set size and selection policy on the clas-
sification performance is discussed in details in Section 5.

Irrespectively of the chosen oracle, the output of this
phase is a trained model, which is basically a careful selec-
tion of samples from the original training set. In more de-
tail, given a geometric representation of computed features
in a multidimensional space, the idea of SVM is to partition
the space into regions, each based on a few representative
samples of each class called Support Vectors. Defining the
surface that partitions the space into areas is however
tricky, since training signatures can be spread out, so that
complex surfaces should be described. The key idea of



Fig. 2. Classification framework: model training (top) and validation (bottom). Live classification is performed as in validation, except that no ground truth
is available as in the validation case.
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SVM is to map, by means of kernel functions, the training
features into a higher dimensional space so that samples
belonging to different classes can be separated by the sim-
plest surface, i.e., an hyper-plane. The training phase is pre-
cisely the procedure to build the separation surface. In our
case, Abacus signatures n represent points in a (Bn + 1)-
dimensional space, which is then transformed into an infi-
nite-dimensional space by means of a Gaussian kernel,
where the partition in subregions takes place. We examine
the impact of other kernels later on in Section 5.

The SVM generated during the training phase is used to
associate a label to a previously unseen signature: this pro-
cess is called classification and is represented in the bottom
part of Fig. 2 (shaded gray area). To classify a new signa-
ture, SVM first remaps it in the higher dimensional space,
and assigns it to the class whose region of space it falls
into. Finally, SVM classification is accepted provided it
passes a rejection criterion, to correctly discard non P2P-
TV traffic. In fact, as SVM partitions the space into regions,
it will always label any new sample as belonging to one re-
gion specified during the training phase. We thus devise a
rejection criterion of which here we only convey the main
idea, deferring mathematical details to Appendix A. The
criterion is based on a measure of distance between signa-
tures in the probability distribution space. On each new
sample classified by SVM as label c, we evaluate the dis-
tance of the new sample from the center of training vectors
having label c: whenever the distance exceeds a rejection
threshold R, the SVM classification is rejected and the sam-
ple is labeled as ‘‘Unknown’’.

In case the classification performance is under analysis,
classification results are finally compared with the refer-
ence ground truth label. This process, known as validation
phase, allows to assess the expected performance of the
classification engine in real operational networks: baseline
results are reported in Section 4, with special attention to
the signatures portability in Section 4.2 and sensitivity to
parameters setting in Section 5.

Finally, it is worth remarking that, apart from the train-
ing phase, the overall framework is well suited for live clas-
sification, yielding a classification result every DT s, (which
is the parameter that defines the reactivity of our classifier).
Notice as well that all operations performed on observed
traffic are extremely lightweight so that our classifier can
cope also with high rates of traffic (a brief analysis of the
scalability of our Python implementation is reported at
the end of Section 5). As a side note, we have also released
an open-source demo of our classifier, available online
[24], that allows the user to run Abacus in real-time, on live
traffic captured on a real network interface. At the same
time, we point out that in all our experiments we used
Abacus as an offline classifier on pre-recorded traces with
associated ground-truth, in order to perform multiple
experiments on the same dataset, which is needed to have
a trustworthy validation of the classification performance.
However, from the above discussion it follows that results
are representative of live classification as well.

The only offline operation is constituted by the training
phase. Concerning this point, we anticipate that the results
of our portability analysis show that a well chosen training
set can be used to successfully classify traffic in a variety of
network conditions, so that offline retraining is rarely re-
quired. Moreover, the collection of the training set is a very
simple process, which can be easily automated. This is not
the case for many other classifiers, usually presenting a
much more complicated training phase, which can even in-



Table 1
Summary of the hosts, sites, countries (CC) and access types of the peers
involved in the testbed.
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volve manual inspection of the packet traces (e.g. DPI re-
quires analysis of the traffic to extract keywords or regular
expressions that identify the target protocol).
Host Site CC Access Nat FW

1–4 BME HU high-bw – –
5 DSL 6/0.512 – –
1–9 PoliTO IT high-bw – –
10 DSL 4/0.384 – –
11–12 DSL 8/0.384 Y –
1–4 MT HU high-bw – –
1–3 FT FR high-bw – –
1–4 ENST FR high-bw – Y
5 DSL 22/1.8 Y –
1–5 UniTN IT high-bw – –
6–7 high-bw Y –
8 DSL 2.5/0.384 Y Y
1–8 WUT PL high-bw – –
9 CATV 6/0.512 – –
3.2. Dataset and oracle

Assessing classification performance is known to be a
non-trivial task due to the difficulty to know the ‘‘ground
truth’’, i.e., what is the actual application that generated
the traffic [9]. Testing the classification engine by means
of artificial traffic (e.g., by generating traffic in a testbed)
solves the problem of knowing the ground truth (i.e., you
are the oracle), but synthetic traces are hardly representa-
tive of real world traffic. Assessing the performance against
traffic traces collected from operative networks is there-
fore mandatory. Moreover, even when considering real
traffic traces, performance of the classifiers can be affected
by the scenario (e.g., corporate and residential networks
have very different traffic mixes). Still, the major problem
when dealing with real traffic traces is finding the ground
truth: for instance, no reliable DPI mechanism exists now-
adays for P2P-TV.

In reason of the above trade-off, we adopt a mixed ap-
proach: we use both (i) traces actively gathered in a large
scale testbed, and (ii) passive traces collected from differ-
ent real operational networks. Testbed traces contain
P2P-TV traffic only and allow us to evaluate the engine
capability to correctly discriminate P2P-TV applications
and correctly label all P2P-TV traffic. Conversely, real net-
work traces do not contain any P2P-TV traffic and allow
us to verify that the engine correctly handles unknown
applications as well (i.e., do not label other traffic as P2P-
TV).
3.2.1. Testbed traces
To overcome the testbed representativeness limitation,

we setup a large testbed involving multiple measurements
points. The testbed was setup in May 2008 in the context
of NAPA-WINE, a 7th Framework Programme project
funded by the EU [7]. The testbed involved more than 30
controlled peers, hosted at seven different Institutions,
scattered over four European countries and connected to
nine different autonomous systems. Details concerning
the experiments are reported in Table 1, and a thorough
analysis of P2P-TV application behavior is available in
[25]. During the experiments, each PC ran the same appli-
cation for one hour, during which all involved peers were
forced to watch the same channel at the same time. Sop-
Cast, TVAnts, PPLive and Joost were run: in all (but Joost)
cases, the nominal stream rate was 384 kbps (�550 kbps)
and Windows Media 9 Encoder was used. PCs were syn-
chronized via NTP and MS Windows scheduler was used
to automatically start the application and tune to the se-
lected channel. Each PC captured the packet-level traces
for the whole duration of the experiment (no packet sam-
pling or loss occurred, and broadcast/multicast packets
were filtered out).3
3 Traces differ because during the experiment some application could not
successfully run, e.g., due to peer failure, or bad network condition.
Since our classifier operates only on downlink traffic,
that is the traffic directed to the target endpoint, we first
extracted the relevant UDP packets from the traces. The
overall duration, number of signatures (i.e. snapshot of
DT = 5 s) as well as number of UDP packet and UDP bytes
finally included in our dataset per application are reported
in Table 2. Notice that the table also reports the percentage
of UDP traffic relatively to the overall amount of IP traffic
in the captured testbed traces. With the exception of
TVAnts, we gather confirmation that UDP traffic is preva-
lent, accounting to about 3/4 of the total traffic volume,
and more than 90% in case of SopCast and Joost. Notice that
this changes with respect to previous work [26] in which
TCP was found to be responsible for the bulk of the ex-
changes. As the version of the softwares that we used in
our experiments is more recent than that used in [26],
the data confirms that P2P-TV sofware is continuously
evolving[27], and that in this evolution UDP is preferred
over TCP. In the TVAnts case, instead, the software version
did not evolved from 2006, in which case UDP/TCP ratio is
in agreement with [26].

Overall, the testbed is representative of about 130 h
worth of video streaming, 93 k signatures samples, 48 M
packets and 26 GB of data. Moreover, as different network
setups (e.g., access technologies, security policies, private/
public addresses, etc.), different content (popular vs
unpopular channels) and peers configurations (hardware,
OS) were part of the testbed, we are confident that the
heterogeneity of the dataset is representative of a wide
range of scenarios.

3.2.2. Real traces
Real traffic traces are collected from two different

networks in Italy.

� CAMPUS (C) is a 5-days long trace, collected during one
working week at the edge router of Politecnico di Torino
LAN, which is representative of a typical data connec-
tion to the Internet [28]. The LAN contains about 7000
hosts, whose users can be administrative, faculty
members and students. Most of the traffic is due to
TCP data flows carrying web, email and bulk traffic,
since a firewall blocks all P2P file sharing applications.



Table 2
Details about the testbed traces.

Application Hr UDP
signatures

UDP
packets

UDP
Bytes

UDP%

SopCast 36 26 k 17.2 M 7.5 G 92.5
TVAnts 36 26 k 14.2 M 7.1 G 33.0
PPLive 26 19 k 11.7 M 5.1 G 70.7
Joost 30 22 k 6.1 M 6.4 G 99.5
Total 128 93 k 48.2 M 26.1 G 73.7
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� ISP (I) is a 1-day long trace collected from one of the
main broadband ISP in Italy which offers triple-play ser-
vices over an all-IP architecture to more than five mil-
lions of users. The ISP network is representative of a
very heterogeneous and uncontrolled scenario, in which
customers are free to use the network without restric-
tion. Traffic is sniffed at a PoP level, to which about
500 users are connected, using more than 2000 differ-
ent IP addresses considering VoIP phones, set-top-
boxes, PCs.

In both cases, traces were collected during May 2006,
when P2P-TV applications were not popular in such net-
works. As such, they are instrumental to assess the amount
of false positive classification (i.e., non-P2P-TV traffic clas-
sified as P2P-TV).

As detailed in Appendix A, the rejection criterion is very
effective in avoiding false alarms: in 72% of the CAMPUS and
85% of the ISP traffic volume, respectively, no false positive
classification is observed. However, our aim is to gather
conservative performance bounds: therefore, we build a
worst-case scenario for the comparison, so that the actual
performance in operational networks can be expected to
be much more robust. To devise the worst-case scenario,
we do not consider unknown traffic that Abacus would re-
ject by design (e.g., such as single-flow client–server traffic,
see Appendix A for further details), but instead take into
account only the subset of traffic that Abacus could actu-
ally misclassify (i.e., accepting unknown traffic as P2P-TV
and generating thus a false alarm), and that consitutes
merely the remaining 28% of the CAMPUS and 15% of the
ISP traffic traces.

As reported in Table 3, we consider both the aggregated
UDP traffic volume (that Abacus can misclassify) produced
by all applications in the CAMPUS and ISP traces, as well as
relevant UDP traffic subsets, representative of both P2P
and client–server applications. The rationale of this choice
Table 3
Details about real traces. To perform a worst-case analysis, only end-points
that can lead to false positive classification are considered (28% of the
CAMPUS and 15% of the ISP overall traffic volume).

Network Traffic Signatures Packets Bytes

UDP 1.9 M 73.6 M 10.6 G
CAMPUS Skype 0.5 M 11.9 M 2.2 G

DNS 0.2 M 5.0 M 0.7 G

UDP 0.7 M 28.5 M 24.9 G
ISP eDonkey 0.3 M 9.8 M 1.4 G

DNS 24.4 k 0.6 M 37.8 M
is that we want to test whether false-positive classification
is more likely to arise when considering P2P applications
or traditional client–server services. Specifically, we con-
sider Skype and eDonkey traffic as examples of voice and
file-sharing P2P applications, and DNS as an example of
traditional client–server service. To reliably identify eDon-
key, we developed and implemented a DPI classifier, based
on [29,30], while we classified Skype with our previous
work [15], and relied on Tshark DPI protocol inspection
capabilities to isolate DNS traffic.
4. Experimental results

This section reports the results of our experimental
campaign. We start by considering signatures that are de-
fined on the number of packets exchanged, providing first
some base-line results in a general enough scenario. Then
we investigate the signature portability, across different
space, time and network conditions: this is done to assess
if a classifier trained with signatures gathered under a gi-
ven set of conditions, is able to correctly identify traffic
generated in completely different settings (e.g., different
ISPs, access technologies, networks conditions, different
TV channels, different times, etc.). Classification perfor-
mance is expressed in terms of

� the amount of True Positive (TP) classification, i.e., num-
ber of tests for which the classifier identifies the correct
P2P-TV application given that the sample was actually
of that P2P-TV class. TPs are counted considering the
testbed traces.
� the amount of False Positive (FP) classification, i.e.,

number of tests for which the classifier identifies the
sample as any of the P2P-TV application, despite the
sample was not actually of any P2P-TV class. FPs are
counted considering the real traces.

Similarly, True Negatives (TN) are tests in which the
classifier correctly rejects (i.e., does not classify it as P2P-
TV) a sample which was indeed not generated by a P2P-
TV application. Finally, False Negatives (FN) are instead
tests for which a sample of a P2P-TV application was mis-
classified (i.e., rejected or classified as another P2P-TV
application).

TP (and FP) results are usually normalized with respect
to the total positive (and negative) samples. The TP-Rate
(TPR) and the FP-Rate (FPR) are defined as follows:

TPR ¼ TP
TP þ FN

; FPR ¼ FP
FP þ TN

;

FNR ¼ FN
TP þ FN

; TNR ¼ TN
FP þ TN

:

4.1. Baseline results

In this first set of experiments, we report results consid-
ering the following parameters: for each application, the
training set includes samples extracted considering two
peers at random from each group of N = 7 networks taking
part to the experiment. From all signatures they generate,
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4000 signatures are randomly extracted to define the train-
ing set, which corresponds to about 17% of all signatures.
Experiments are then repeated 10 times, randomly chang-
ing the training set and so the validation set at each run.
Finally, average classification results are computed. We
consider signatures generated using DT = 5 s intervals.
Classification are performed using SVM with a Gaussian
kernel and exponential bins Bn = 8, with a rejection thresh-
old R = 0.5. Parameter sensitivity and optimization is later
discussed in the remaining part of this section.

The top part of Table 4 reports the classification perfor-
mance of Abacus on the testbed traces adopting a ‘‘confu-
sion matrix’’ representation. Each row considers traffic of a
given application, and each column reports classification
results. Values on the diagonal correspond to True Posi-
tives (highlighted in bold), whereas elements outside the
diagonal correspond to False Negatives, which accounts
for both misclassified samples, and rejected samples
(which fall in the last column Unk, ‘‘Unknown’’). Perfor-
mance are expressed for the time being in terms of signa-
tures (i.e., groups of packets received during a DT interval)
but we will also consider classification performance in
terms of packets, bytes and peers later on. It can be seen
that, in the worst case, about 81% of individual signatures
are correctly classified. The most difficult application to
identify appears to be PPLive, which is confused with Sop-
Cast (9.55%) or Joost (2.32%). Other applications show
higher TPR, with TVAnts showing almost perfect match.
On average, about 4.5% of P2P-TV signatures are rejected,
therefore being labeled as Unknown.

Bottom part of Table 4 reports results considering the
real traces dataset. Since no P2P-TV traffic is present in this
dataset, True Negative Ratio (TNR) is the main index to be
considered (boldface, rightmost table column). Results
show that the rejection criterion adopted is very robust,
so that less than 5% of signatures samples are misclassified
in the worst case. Recall that this 5% misclassification per-
centage refers to the about 15% of the traffic that Abacus
could misclassify (see Appendix A for further details) so
that the overall TNR is actually much higher: namely, con-
sidering all the UDP traffic traces of the real networks,
more than 99% of the signatures do not raise any false
alarm. Left part of the Table details the breakdown of False
Positives: PPLive and TVAnts are the cause of most mis-
classification, while Joost practically causes no False
Positives.
Table 4
P2P-TV classification performance: confusion matrix of testbed and real
traces (signatures).

PPLive TVAnts SopCast Joost Unk

PPLive 81.66 0.58 9.55 2.32 5.90
TVAnts 0.49 98.51 0.18 0.77 0.04
SopCast 3.76 0.11 89.62 0.32 6.19
Joost 2.84 0.55 0.28 89.47 6.86

PPLive TVAnts SopCast Joost TNR

CAMPUS 2.42 2.23 0.01 0.02 95.3
ISP 0.66 0.13 0.43 0.10 98.7
4.2. Signatures portability

We now evaluate network portability of Abacus signa-
tures. The objective is to answer the question: how generic
is a training performed considering traces collected in a
network? Our testbed dataset is different enough to see
what happens when, for example, the classifier is trained
considering a trace collected in a University Campus net-
work, and then used in a totally different network, like a
ADSL scenario. Moreover, both the access types and the
channel popularity could impact the accuracy of the train-
ing set, which we deal with in the following. Besides, we
are interested in testing how often the signatures have to
be redefined, considering P2P-TV traces gathered in differ-
ent years. Finally, we also test how robust the classifier is
in presence of high packet loss or limited bandwidth.

For the sake of simplicity, we consider only packet-wise
Abacus signatures and testbed traces, and no longer apply
the rejection criterion. Results are summarized in Table 5:
the first column reports the experiment label, the second
column (Train) states which training set was used, while
the third column (Test) reports the dataset using for the
classification process. TPR for each application are reported
in the subsequent columns. To ease the comparison, the
first row (labeled Ref) reports the baseline results: notice
that TPR is slightly higher with respect to Table 4, since
we do not apply the rejection criterion.
4.2.1. Portability across network sites (NS)
In the first scenario, we consider traffic captured from

PCs running at different institutions, i.e., in different Coun-
tries, networks, etc. (see Table 1). We start by considering
peers that are all placed in corporate or campus networks,
with high-bandwidth connections to the Internet. There
are seven of such sites. For each application, we select four
sites, and use traffic collected there for the training. Then,
traces collected in the remaining three networks are classi-
fied to evaluate TPR. To gather robust results, we consider

every possible combination 7
4

� �
¼ 35 of training and

validation subsets. For each combination, three tests are
performed with different random training samples.

Results are reported in the raw labeled as NS in Table 5,
which shows that signatures are network-portable under
Table 5
Signature portability: TPR evaluation.

Train Test PP TV SO JO

Ref ALL ALL 84.84 98.51 92.63 91.50
NS 4/7 3/7 78.90 97.61 90.30 88.61

ADSL ADSL 83.48 97.86 95.61 91.36
AT ADSL HB 79.63 93.73 87.30 90.61

HB ADSL 58.28 98.15 93.70 81.55
POP POP 95.88 – – –

CP POP UNP 48.59 – – –
UNP POP 94.79 – – –

TI 2008 2006 18.81 98.44 51.06 –
HB Bw 91.14 76.80 75.76 –

EI HB Delay 88.19 84.62 77.80 –
HB Loss 75.22 91.77 84.31 –
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homogeneous settings: indeed, the largest performance
drop is 4%, which corresponds to the PPLive case.

4.2.2. Portability across access technologies (AT)
We now test to what extent signatures are portable

across different access technologies, e.g., ADSL versus High
Bandwidth (HB) access. As noted in [5], nodes with high-
bandwidth access can act as ‘‘amplifiers’’, providing con-
tent to possibly several peers; conversely, ADSL peers
may only act as ‘‘forwarder’’ due to the limited uplink
capacity. Despite we consider only the downlink traffic,
such different behaviors can impact the Abacus signatures,
e.g., due to a different fraction of signaling packets a peer
receives. For example, an amplifier peer can receive many
small sized acknowledgments, while a low-capacity peer
mainly receives large packets containing video data. We
therefore split the testbed dataset into two parts: the first
contains traces collected from all High Bandwidth PCs,
while the second contains ADSL PCs. Three tests are per-
formed: (i) classifying ADSL traces using ADSL training
set, (ii) classifying ADSL traces using the HB training set
and (iii) classifying HB traces using ADSL training set. Each
test has been repeated 10 times, and average results are
reported.

Results are reported in rows labeled AT in Table 5. Over-
all, Abacus signatures confirm their portability even across
different access networks: for TVAnts, SopCast and Joost,
results are modestly impacted by train/test combination
(being 8% of reduced TPR the worst case). In case of PPLive,
the TPR drops to 58% when HB training is used to classify
ADSL traffic. This is likely due to the fact that PPLive is very
aggressive in exploiting HB peers upload capacity, so that
the number of peers sending acknowledgments shifts the
signature toward low bins, i.e., many acknowledgment
packets are received from a given peer. ADSL peers, on
the contrary, contribute with little upload bandwidth, so
that the incoming traffic is mainly due to video chunks re-
ceived as trains of packets, i.e., groups of large data packets
that are received from contributing peers.

4.2.3. Portability across channel popularity (CP)
We now consider what is the impact of channels with

different popularity. Channel popularity indeed may signif-
icantly influence the P2P-TV application behavior: for
example, considering popular channels, a large number of
peers are available, while for unpopular channel few peers
can be used to exchange the video content. We performed
a second experiment considering a very popular (POP)
channel using PPLive. We selected PPLive since it is the
P2P-TV application for which Abacus showed the worst
performance so far. The total number of peers observed
during this experiment was larger than 200,000, while in
the previous dataset less than 56,000 peers were observed.
We refer to this dataset as a unpopular channel (UNP). As
before, we evaluate the portability over all combination
of train/test sets, repeating the experiments 10 times.

Results are reported in the rows labeled CP in Table 5.
Few considerations hold: first, PPLive classification perfor-
mance improves when it comes to the classification of pop-
ular channels (i.e., TPR in POP/POP and UNP/POP cases is
about 95% versus the about 85% of the UNP/UNP case used
as reference). Nonetheless, we observe that the classifica-
tion of UNP dataset when training has been done consider-
ing the POP dataset leads to poor performance (TPR drops
to less than 50%). This partly limits the portability across
channels. A simple solution consists in building a training
set containing a mixture of signatures from both traces,
which raises the TPR again to about 85%. This result sug-
gests that channel popularity should be explicitly taken
into account when building the training set, by including
samples that are representative of different channel
popularity.

4.2.4. Portability over time (TI)
We now focus on the signatures portability over differ-

ent periods of time. From a practical point of view, this al-
lows to know how often the classifier should be retrained.
We resort to the traffic traces used in [26], that authors
kindly made available to the scientific community. Traces
of [26] were collected in July 2006 during the Fifa World
Cup: the study focused on the same applications we exam-
ined in this article, with the exception of Joost which was
not available at that time. Overall, the time-portability
measurements account for 14 h of video, 14M packets
and 2.3 GB of data. We classify this old dataset using the
Abacus classifier trained with the dataset collected in
2008. (same training set of Section 4.1). Notice that the
network environment was also different, so that we are
jointly evaluating time and network portability. Results
are reported in the row labeled TI of Table 5, which shows
that TVAnts is correctly classified, SopCast has a TPR of
51%, while PPLive is almost completely misclassified. This
suggests that some applications changed drastically their
behavior from July 2006 to March 2008. Notice that TVAnts
was at version 1.0.58 in [26] and it is now at 1.0.59, which
suggests that little changes have been implemented. On
the other hand, SopCast moved from version 0.9 to version
3.0.3 PPLive from 1.1.0 to 1.9.15, hinting to clearly more
drastic changes as explained in [27,31]. Thus, in case appli-
cations do not change their internal algorithms, the Abacus
signatures are extremely portable across time – even
across years – as we see in the case of TVAnts. On the other
hand, if an application implements new algorithms which
result in new behavior, then Abacus should undergo a
new training phase. However, similar considerations are
valid for any kind of classifier, from port-based ones, to
DPI or behavioral classifiers. In fact, whenever the features
change, all classifiers must be trained again (e.g. by chang-
ing the port number, updating the DPI signature or re-
training the behavioral/statistical features).

4.2.5. Portability over emulated impairments (EI)
As a final case, we consider whether Abacus signatures

are portable across different network conditions. We con-
sider the traces gathered in an active testbed [32], where
changing network conditions were artificially enforced. In
particular, in these experiments, a Linux router was used
to emulate some network conditions: (i) bandwidth, (ii)
delay and (iii) packet losses were imposed on the downlink
path to the PC running the P2P-TV application. For lack of
space, we refer the reader to [32] for a complete descrip-
tion of the testbed: we only point out that impairments
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range from mild to very tough conditions (e.g., 200 Kbps of
available downlink bandwidth, delay up to 2 s and packet
losses up to 40%). Traces gathered in this testbed are clas-
sified considering the HB training set, and results are re-
ported in the last lines of Table 5 labeled EI. Even in
these extreme conditions, Abacus still exhibits very high
TPR, which can still exceed 90% for some applications, with
a worst case of about 75%. Reported results are averaged
over all the time varying conditions, including very dis-
torted scenarios. Classification results are differently im-
paired by different network conditions. For example,
PPLive is mostly affected by loss increase, while TVAnts
classification results are more sensitive to bandwidth
change. SopCast results are mostly affected by bandwidth
and delay changes.

Interestingly, results ameliorate considering PPLive
classification in the case of bandwidth limitations. While
this seems counter intuitive, it can be explained consider-
ing that most False Negatives obtained from other applica-
tions are actually misclassified as PPLive. This suggests that
PPLive signatures are more variable and spread out, avoid-
ing FN classification for PPLive but possibly causing more
FP classification for other applications.

As an example, Fig. 3 reports the time evolution of two
different experiments of SopCast classification, considering
a scenario in which the available bandwidth is decreasing
(top plot), or the packet loss rate is increasing (bottom
plot). Every 5 min network conditions are artificially wors-
ened by either reducing the available bandwidth by
50 Kbps, or by increasing the packet loss rate by 5%. The
resulting impairment profile is reported in the picture.

Fig. 3 plots individual classification decisions, taken
each DT = 5 s: these are represented with crosses, referring
to the right y-axis, and allow to see when and how the
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Fig. 3. Portability over emulated impairment: example of temporal
evolution of SopCast classification for decreasing bottleneck bandwidth
(a) and increasing packet loss rate (b).
application has been eventually misclassified. The picture
also reports the True Positive Rate, evaluated over 20 con-
secutive signatures (i.e., 100 s), represented as a continu-
ous dotted line referring to the left y-axis. Considering
top plot, which refers to bandwidth limited scenario, it
can be seen that as soon as the bottleneck bandwidth kicks
in, SopCast is misclassified as PPLive during a brief period,
possibly hinting to a sudden reaction of the application to
the anomalous conditions. Then, SopCast is correctly clas-
sified until the available bandwidth drops too low: after-
ward, SopCast TPR drops quickly, being most of the time
misclassified as PPLive and seldom with TVAnts. At the
end of the experiment, when the bottleneck bandwidth is
removed, SopCast is again correctly classified. Similar con-
siderations hold for the loss scenario depicted in the bot-
tom plot of Fig. 3, in which samples are misclassified
only when loss rate exceeds 30%.
5. Sensitivity analysis

After evaluating the effect of external conditions on the
classifier performance, in this section we rather focus on its
internals. In fact we present the results of the experiment
carried out to investigate the sensitivity of the classification
to parameter changes, so to select the settings which guar-
antee the best performance.

5.1. Impact of the rejection threshold R

Irrespectively of the precise distance metric used in the
rejection criterion (whose mathematical details are re-
ported in Appendix A), the selection of the rejection
threshold R is guided by the following tradeoff: R should
be large to maximize the TPR (i.e., avoid classifying P2P-
TV as Unknown), while R should be small to minimize
the FPR (i.e., avoid classifying unknown traffic as P2P-TV).

We evaluate the TPR and FPR as a function of R in Fig. 4,
where a solid vertical line at R = 0.5 represents the thresh-
old used so far. It can be seen that TPR of P2P-TV applica-
tions quickly saturates to an asymptotic value for R P 0.5.
Conversely, the FPR of non-P2P-TV traffic increases only for
large values of R, and for low values of R 6 0.5 almost no
false alarm is raised. Among the various traffic, only DNS
traffic is sometimes misclassified as P2P-TV traffic. This
confirms R = 0.5 to be a good choice of the threshold.

5.2. Impact of time interval DT

The choice of the value of the DT parameter is driven by
the following trade off. On the one hand, timely detection
of P2P-TV traffic needs DT to be small. On the other hand,
sufficiently large time intervals must be considered to esti-
mate the signature. Moreover, to limit computational com-
plexity and the generated amount of information, network
monitoring entities (such as Netflow [33] probes) typically
operate on larger timescales.

Results are reported in Fig. 5, where the best results for
each application is labeled with a star. As expected, med-
ium-duration window (e.g., DT = 5 s) yields higher TPR
for most applications, while providing a more timely clas-
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sification. Smaller values of DT limit the estimation of the
bin distribution, impairing classification accuracy. Interest-
ingly, for large windows (e.g., DT = 60 s) the discriminative
power of the Abacus signatures only mildly degrades for
three out of four applications. Only for PPLive we observe
a decrease of 20% for the TPR, which is due manly to the
rejection criterion being too aggressive and discarding cor-
rect classifications, suggesting that for longer DT the rejec-
tion criterion should be more carefully tuned.
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5.3. Impact of training set size

We now assess the classification sensitivity to varia-
tions on the training set size, i.e., the impact of the number
of samples that form the training set. Indeed, the training
set should be large enough to be representative of the
application behavior under a large range of conditions.
On the other hand, the SVM training and classification
computational costs benefit of a smaller set. Moreover, a
too large training set could result in the well-known phe-
nomenon of over-fitting, resulting in poor classification
performance. Fig. 6(a) reports the TPR for each application,
as a function of the number of signatures used in the train-
ing phase per each application. For each value of the train-
ing set size, we run 10 independent experiments over
which results are averaged. The bottom x-axis reports the
number of signatures used for training on a logarithmic
scale, while the upper x-axis reports the percentage of
training samples versus the total testbed dataset. Training
set size extends up to 4000 signatures per application,
which corresponds to the 17% early used in Section 4.
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Fig. 5. P2P-TV TPR for different values of the time interval DT. Best-case
for each application is labeled with a star ⁄ sign.
Results show that no over-fitting phenomenon is expe-
rienced, since the TPR increases with the increase of the
training set size. Best results are obtained considering
4000 signatures per application, which validates the choice
made in previous section. Notice that even by drastically
decreasing the training set size to about 300 signatures
per application, the corresponding decrease in TPR is only
modest, e.g., 8% in the worst case of PPLive, while TVAnts
shows excellent results even with an extremely reduced
training set. This interesting performance is the result of
both the discriminative power of SVM, and the descriptive
expressiveness of Abacus signatures. Clearly, a better char-
acterization of each application behavior is achieved
including more signatures, as reflected by the improved
performance.
5.4. Impact of training set diversity

We now fix the training set size and focus on the train-
ing set diversity, i.e., the number of different peers from
which signatures are selected. Our aim is to roughly assess
whether it is sufficient to observe a single peer in a given
network to gather an adequate description of the applica-
tion behavior in that network, or whether the observation
of several peers is necessary. To answer this question, we
fix the overall training set size to 4000 signatures per
application and vary the number of peers selected as refer-
ence in each network (see Table 1 for details on the num-
ber of peers). Each experiment is repeated 10 times to
collect average results. Fig. 6(b) shows the TPR obtained
considering a reference set of one, two or all peers for each
network in the testbed. Results show that the increase of
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Fig. 6. Impact of size (a) and diversity (b) of the training set.
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the number of peers only provides a very limited gain on
the classification performance. From a practical perspec-
tive, this is a very desirable property: even a single trace
is sufficient to build expressive signatures.

5.5. Impact of SVM kernel and binning strategy

Since the core of our classification framework exploits
SVM, all parameters that are susceptible of affecting its
performance need to be investigated as well. Therefore,
we focus on two main choices concerning SVM: (i) the ker-
nel function and (ii) binning strategy.

The kernel function is used to map the training points to
an hyper-space where they can be separated by hyper-
planes. The SVM literature is very rich of kernel functions,
which are more or less indicated for different kinds of data.
In our study we evaluate three well-known kernels: the
general-purpose gaussian kernel (KG), the linear kernel
(KL) and the Bhattacharyya kernel (KB). The linear kernel
(3) is simply the dot product of two feature vectors, while
the Bhattacharyya kernel (4) can be obtained by substitut-
ing each features with its square root [34]. As we will ex-
plain in Appendix A, we use the Bhattacharyya distance
[35] between probability mass functions as a core tool
for the rejection criterion, as it is an extremely valuable
metric to quantify the separability of two classes: a natural
question is therefore whether the kernel function (4) can
be helpful to better separate the different applications also
from the SVM standpoint.

KGðxi; xjÞ ¼ e�ckxi�xyk2
; ð2Þ

KLðxi; xjÞ ¼ xi � xj; ð3Þ
KBðxi; xjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
xi � xj

p
: ð4Þ

As far as bin distribution is concerned, we use either
Bexp = 9 exponential-width bins (base 2), or Bfix = 255 con-
stant-width bins (1-packet steps), both spanning over the
[0,255] packets range. Recall that the number of bins im-
pacts both memory requirement and computational com-
plexity, so that exponential binning should be preferred
in case of comparable classification performance.

Results are shown in Table 6, which reports classifica-
tion results in terms of the TPR of P2P-TV applications
and the number of Support Vectors (SV) of the trained
model. The latter is a measure of the classification compu-
tational cost, since the number of operations that has to be
performed to classify each signature grows linearly with
the number of SVs. The cost of the training phase is not
considered, since it is an offline operation rarely per-
formed. Notice also that, due to the type of operations in
Table 6
Classification performance and cost for different binning strategies, SVM kernels.

Bins Kernel Recall (TPR)

PPLive TVAnts SopCast

Exponential Gaussian 81.66 98.51 89.62
Bhattacharyya 77.73 98.52 88.58
Linear 73.44 98.54 88.55

Constant Gaussian 67.12 97.86 89.76
Bhattacharyya 65.27 97.14 89.58
Linear 64.90 97.70 89.45
(2)–(4), the selected kernel has impact on the computa-
tional cost – with the Linear kernel being light-weighted,
the Gaussian kernel the most expensive and the Bhatta-
charyya kernel in between the other two.

Table 6 collects results highlighting the best choices
using bold font. Irrespectively of the binning strategy, the
Gaussian kernel yields consistently better results for both
TPR and number of SVs. An important decrease in the per-
formance is observed when considering constant binning,
where the TPR for PPLive and Joost falls below the 70%.
This is mostly due to the rejection criterion, which wrongly
identifies as unknown a conspicuous number of signa-
tures: indeed, the Bhattacharyya distance is less effective
with this longer signature containing many zero values,
which result in bigger distances from the class center. Re-
sults obtained with the Bhattacharyya kernel are almost
equal to the linear kernel, with the advantage that the
number of SV is smaller. Finally it must be noted that
TVAnts requires a very small number of SV to obtain very
good performance, irrespectively of the binning and kernel
choice. In contrast PPLive, the most difficult application to
classify, requires a number of SV that is ten times the num-
ber of TVAnts for its best choice of binning and kernel.

With respect to the bin distribution choice, the use of
exponential binning reduces the memory consumption
and the number of operations to be performed by Bfix/Bexp,
i.e., almost a factor of 30. For example, assuming 1 GB of
RAM, Bexp = 9 exponential bins would allow to compute
about 15M end-points considering 64 bit floating point
notation. With the same amount of memory, using Bfix lin-
early spaced bins allows to track roughly 0.5M end-points.
Considering CPU time, a server equipped with an Intel
Xeon E5345 clocked at 2.33 GHz reaches 3000 classifica-
tions per second using exponentially distributed bins. Gi-
ven that a signature is produced every DT = 5 s, about
15,000 end-points could be classified in real-time even
by our non optimized Python code. Considering linearly
distributed bins, only 126 classifications per second are
computed, allowing to classify no more than 630 end-
points.

Results from this analysis reinforces the selection of an
exponential binning strategy in combination with the
Gaussian kernel.
6. Improving the accuracy: extending the signature

In this section we augment the Abacus signature to in-
clude not only the number of packets received by each
peer, but also the number of received bytes. Following
In bold the best results.

Support Vectors (SV)

Joost PPLive TVAnts SopCast Joost Total

89.47 1015 106 845 415 2381
87.99 1759 110 1185 798 3852
87.42 2062 219 1348 956 4585

69.66 853 81 654 635 2223
68.27 1215 113 902 755 2985
68.88 1382 316 911 1091 3700



Table 7
Extended Abacus signatures: confusion matrix of P2P-TV application.

Signatures: confusion matrix

PPLive TVAnts SopCast Joost Unk

PPLive 95.42 0.22 1.86 0.36 2.14
TVAnts 0.06 99.84 0.10 0.00 0.00
SopCast 0.98 0.15 97.55 0.03 1.29
Joost 0.21 0.01 0.01 94.97 4.80
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the same procedure, we consider a DT time interval in
which the endpoint P receives b1, . . .,bK bytes from K peers.
Bb + 1 exponential-width classes are identified, according
to the number of bytes received from P, and counting
the occurrences of each class in Bi. The byte-wise signature
b is then obtained by normalizing the count Bi over the to-
tal number of received bytes. The tuple b is a pmf, whose
component bi can be interpreted as the probability that
an arbitrary peer sends between (2i�1, 2i] bytes to P. For
byte-wise signatures, we set the number of bins to Bb = 14.

We define the application signature by concatenating
the packet-wise n and byte-wise b signatures in a single
vector a = (n, b). Since the extended signature a = (n, b) is
composed of two parts, we can define two rejection thresh-
olds, considering n or b only. We therefore report in Fig. 7
the TPR and FPR as a function of the rejection threshold R
applied to byte signatures. Contrasting Fig. 7 with Fig. 4,
we observe that the bytes signature exhibit a better behav-
ior also with respect to the rejection criterion. In fact, on
the one hand, TPR curves saturate much faster, which
means that points of the same application are better clus-
tered; on the other hand, the FPR curves start showing up
for larger values of the threshold, which is even better be-
cause we can safely adopt a larger value for R, obtaining at
the same time lower FPR and higher TPR. Given these con-
siderations, we decided to apply the rejection criterion
only to the byte-wise signatures b with a threshold R = 0.6.

We perform the classification based on the extended
signature a with a byte-wise rejection criterion and a rejec-
tion threshold R = 0.6. Results reported in Table 7 are gath-
ered for DT = 5 s, with a training set of 4000 signatures
extracted at random. Compared to previous results of Table
4, the extended signature leads to significant performance
improvement, so that TPR is now about 95% in the worst
case, and misclassification probability is reduced to few
percentage points.

To better appreciate results, Table 8 reports perfor-
mance considering correctly classified packets, bytes and
peers. Packet-wise and byte-wise performance can be
directly gathered by taking into account the number of
packets and bytes carried by each signature; the peer clas-
sification is instead evaluated considering a majority crite-
rion, so that a peer is classified as running application X if
the majority of time such peer samples have been classi-
fied as X. Table 8 reports the percentage of correct classifi-
cation (TP), of misclassification (Mis, corresponding to the
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Fig. 7. TPR and FPR as a function of the rejection threshold R evaluated on
bytes feature.
sum by rows of non diagonal values in the confusion ma-
trix) and rejection (Unk) for all the above metrics. Notice
that FN = Mis + Unk. Interestingly, performance improves
when the number of correctly classified packets and bytes
is considered, suggesting that misclassification occurs
when signatures carry few data, e.g., when the application
is possibly malfunctioning. In case of peer classification,
reliability of end-points identification increases as well.
Only three hosts are classified as not running any P2P-TV
application, and notably there is no misclassification.
Investigating further, we found that rejected cases corre-
spond to peers that received a small amount of traffic,
and, thus, possibly were not playing any video.

We now assess the benefits of the extended signatures
on the effectiveness of the rejection criterion. We again
consider real traffic collected from operational networks,
considering only the worst-case traffic portion for which
possible false positives may be triggered. Table 9 reports
results referring to the extended signatures, showing the
false positive rate (FPR) and the breakdown of false alarms
between the different P2P-TV applications. First, notice
that the number of false alarms is very limited, being only
2.7% in the worst-case traffic subset: however, if all UDP
traffic is considered, FPR drops to less than 0.1%. This neg-
ligible number of false alarms confirms the reliability of
the classification engine. Moreover, false positive rate is
low for individual applications too: indeed, it is very rare
that eDonkey or Skype traffic is confused with any P2P-
TV application (0.09% and 0.04% of false positives).
7. Related work

Despite Internet traffic classification is a relatively re-
cent research field, there is already a large literature on
the topic [8–10,12–14,16,17,40,18,41,19,51]. In this sec-
tion we will provide only a brief overview of the classifiers
of this vast body of literature in order to place our work
among the others. For more details and a complete organic
description we refer to the survey of Nguyen and Armitage
[36] and to the quantitative comparison of Kim et al. [37].

In the first days of the Internet, identifying the generat-
ing application of some network traffic was not a issue:
protocols were assigned to well-known transport-layer
ports by IANA, so a simple look up of such value in the
packet header was enough to achieve a good classification.
Unfortunately port-based classification has become unreli-
able [9] as protocols use non-standard ports or, worse, hide
themselves behind other protocols’ ports. Hence, research-
ers had to come up with novel ways to resolve this
problem.



Table 8
Extended Abacus signatures: classification results per signature, packets, bytes and end-point.

Signatures Packets Bytes Peer

TP Mis Unk TP Mis Unk TP Mis Unk TP Unk (n)

PPLive 95.42 2.44 2.14 98.11 1.60 0.29 98.32 1.54 0.14 100.0 0.0 (0)

TVAnts 99.84 0.16 0.00 99.77 0.23 0.00 99.82 0.17 0.01 100.0 0.0 (0)

SopCast 97.55 1.17 1.29 99.18 0.78 0.04 98.96 0.98 0.06 97.06 2.94 (1)

Joost 94.97 0.23 4.80 99.50 0.25 0.25 99.62 0.23 0.15 93.33 6.67 (2)

Table 9
Non P2P-TV traffic in campus and ISP traces: False Positive Ratio FPR and FP Confusion Matrix. To perform a worst-case analysis, only end-points that can lead
to false positive classification are considered (28% of the CAMPUS and 15% of the ISP overall traffic volume).

Traffic FPR FP confusion matrix

PP TV SO JO

C UDP 2.70 0.57 1.00 1.13 –
Skype 0.04 – 0.03 0.01 –
DNS 0.17 0.02 0.10 0.05 –

I UDP 0.90 0.61 0.14 0.15 –
eDonkey 0.09 0.02 0.04 0.03 –
DNS 0.44 0.03 0.33 0.08 –
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Payload-based classifiers [8–11] inspect the content of
packets well beyond the transport layer headers, looking
for distinctive protocol signatures (either keywords or
matching regular expressions). This family of classifiers
has long provided extremely accurate results [9] and has
been implemented in several commercial software prod-
ucts. Nevertheless, although research have designed auto-
matic ways to extract signature from packets [8,10,11],
payload based classifier are extremely greed in terms of
computational resource and fail by design with encrypted
traffic.

Statistical-based classification [12–15,17,16] is based on
the rationale that, being the nature of the services extre-
mely diverse (e.g., Web vs. VoIP), so will be the corre-
sponding traffic generated (e.g., short packets bursts of
full-data packets vs long, steady throughput flows com-
posed of small-packets). Such classifier exploits several
flow-level measurements to characterize the traffic of the
different applications [12–14], on which they usually apply
data mining techniques. Unsupervised clustering of traffic
flows [12] does not require training and allows to groups
flows with similar features together, possibly identifying
novel unexpected behaviors. Supervised machine learning
techniques, though, need to be trained with know traffic,
but are able to provide a precise labeling of the traffic. If
all these works are mostly focused on post-mortem traffic
classification (i.e., after the flow ends), recently similar
techniques have been applied to packet-level properties
of network flows (e.g. size and direction of the very first
packets), giving birth to techniques able of early traffic
classification [16,17].

Finally, behavioral-based classification [18,19,51] aims
at identifying the traffic generated a host by the sole exam-
ination of the generated traffic patterns (e.g., how many
hosts are contacted, with which transport layer protocol,
on how many different ports, etc.): the idea is that different
applications generate different patterns. For instance, a P2P
host will contact many different peers typically using a sin-
gle port for each host, whereas a Web server will be con-
tacted by different clients with multiple parallel
connections. The combination of metrics able to capture
such differences with machine learning techniques has
yielded extremely promising results in the coarse-grained
classification of hosts. This approach is very light-weight,
as it does not require neither to inspect portions of the
packet payload as in [8,10], nor to perform operations on
a per-packet basis as in [16,17]. Moreover, given the cur-
rent tendency toward flow-level monitors such as NetFlow
[33], the possibility to operate on the sole basis of behav-
ioral characteristics is a very desirable property for a
classifier.

Our work on Abacus, of which a preliminary version ap-
peared in [20] fits in this last category. Compared to [20],
this paper has some fundamental additions: first the signa-
tures have been extended to include the counts of bytes be-
sides the counts of packets, which greatly improved the
overall accuracy; second, in this work we perform a de-
tailed sensitivity analysis of classification performance as
well as a thorough portability assessment of the signatures
across different network conditions. Besides, we point
out that recent results [38] suggest that the technique
may be applicable to a larger class of P2P traffic in general.

We also point out that in [11] we already proposed a
classifier that can successfully target P2P-TV traffic, named
KISS. However, KISS uses a totally different approach to
traffic classification and rather belongs to the family of
payload-based techniques (which also means that it fails
with completely encrypted traffic). As a matter of fact, KISS
stochastically inspects packet payload to infer a statistical
description of the protocol employed by an application
by means of a measure of the randomness of group of bits
of the payload itself (that constitute the KISS signatures). In
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[39] we compared Abacus with KISS, showing how KISS is
able to classify a wider range of protocols (i.e., not only
P2P-TV) at the cost of a however higher computational
complexity.

We conclude this overview with an overall consider-
ation on the applicability of the classifiers. With few excep-
tions such as [40,42], the wide majority of the classification
algorithms proposed in literature cannot be directly ap-
plied in the network core. Limitations can be either intrinsic
to the methodology (e.g., behavioral classification typically
focuses on endpoint [18] or end-hosts [41] activity), or be
tied to the computational complexity (e.g., DPI [8–11] cannot
cope with the tremendous amount of traffic in the network
core), or to state scalability (e.g., flow-based classification
[14,12] requires to keep a prohibitive amount of per-flow
state in the core), or to path changes (path instabilities or
load balancing techniques can make early classifications
techniques such as [16,17] fail in the core). At the same
time, we point out that classifying traffic the network in-
gress point is a reasonable choice for ISPs: indeed, traffic
can be classified and tagged at the access (e.g., DiffServ IP
TOS field, MPLS, etc.), on which basis a differential treat-
ment can then be applied by a simple, stateless and scalable
core (e.g., according to the class of application).

Finally, for the sake of completeness, we mention a few
references on other relevant works on P2P live-streaming
system. As this body of literature is extremely vast, we fo-
cus on works that study existing and popular systems
(i.e., that are interesting for ISPs to classify), and leave work
that focus on the design of new systems out of scope. In-
deed, after the first pioneering works [43,44] presenting
this innovative way of streaming content across thousands
of hosts using swarm-like unstructured system (somehow
inspired by BitTorrent [45]), the main reason of the re-
search community interest on P2P-TV is clearly the success
of commercial software as [1,2]. With this regard,
measurement of P2P-TV applications are the focus of
[46,47,26,48,25,32]. Specifically, [46] focuses on PPLive,
[47] on UUSee, [48] on Zattoo, while [26,25,32] perform a
comparison of several popular applications (the first con-
siders PPlive, SopCast and TVAnts, the second adds Joost
and the latter also adds TVUplayer).
8. Conclusions

This work proposed Abacus, a novel behavioral ap-
proach for fine-grained classification of P2P-TV applica-
tions. Our methodology relies only on the simple count
of packets and bytes exchanged amongst peers during
small time-windows. Our classification engine, which
makes use of Support Vector Machines during the decision
process, correctly classifies about 95% of packets, bytes and
peers in the worst case. Moreover, the classification engine
raises very few false alarms, well below 0.1% in the worst
case. Such astonishing performance is the result, on the
one hand, of the discriminative power of SVM, and, on
the other hand, of the descriptive expressiveness of Abacus
signatures.

A large set of experiments has been carried over to as-
sess Abacus performance, both considering parameter sen-
sitivity, and signature portability: results prove that the
proposed approach is very robust to both. Training the
Abacus classifier is simple, as signatures can be generated
automatically using a very small number of traces. In terms
of both memory requirements and computational com-
plexity, Abacus is also very lightweight. Moreover, the fact
that behavioral data used by Abacus are directly available
from commonly deployed NetFlow monitors makes it apt
to be deployed in real network environments.

While Abacus opens the way for fine-grained classifica-
tion engines working solely on behavioral data, it also
raises a number of interesting points, which we plan to ad-
dress in future work. First of all, while we proved Abacus to
be extremely reliable on P2P-TV traffic, it would be inter-
esting to investigate whether Abacus can classify applica-
tions of other P2P classes as well: encouraging results
[38] suggest this to be possible, but further analysis on
wider datasets is needed to confirm the finding.

Second, the behavioral statistics on which Abacus deci-
sions are taken are extremely reliable when the classifica-
tion is applied to all the traffic observed by an endpoint.
Another open point concerns the performance of Abacus
when the classification engine is moved from the access
(e.g., DSLAM) deeper into the aggregation network (e.g.,
at the first or second IP router), where not all the traffic
can be observed. In this case, although the observed traffic
is only a subset of the whole endpoint traffic, nevertheless
the breakdown of peers in low and high contributors bins,
as measured by the Abacus signatures, may not change sig-
nificantly in practice across subsets. Indeed, first consider
that since Abacus signatures are normalized, changes in
the raw traffic volume do not affect the signature defini-
tion, other than for quantization effect. Second, considering
a partitioning in subsets that is due to, e.g., IP routing or
flow-level load balancing, the peers in the subset would
be independently sampled: thus, provided that enough
peers are sampled by a subset, the resulting subset would
contain both short flows (e.g., peer discovery and overlay
maintenance) as well as long flows (e.g., data transmission
in multiples of the chunk size) without any particular bias
affecting their breakdown. As part of our future research,
we aim at digging this issue further, by observing the same
traffic from multiple vantage points in the network, and
applying the classification to different subsets to verify to
what extent the above considerations hold in practice.

Finally, the information required by Abacus relies on
simple operations performed on the raw count of ex-
changed packets and bytes. While the Abacus signatures
are extremely expressive, nevertheless they constitute a
single choice within the extremely large spectrum of
behavioral signatures (e.g., any combination of operations
on flow-level data). To gather a more complete picture of
fine-grained behavioral classification, we finally aim at sys-
tematically exploring the space of behavioral signatures, by
building a large set of potentially expressive features and
exhaustively investigating their classification performance.
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Appendix A. Rejection criterion

SVM is a powerful classification algorithm, but for our
purpose of network traffic classification it presents one
simple shortcoming. Recall that a SVM trained model is
composed of two parts: first a mapping from the original
features space to a multidimensional space; second a set
of hyperplanes individuated by Support Vectors, which de-
fines a partition of the target space into regions, each corre-
sponding to a possible classification outcome. The problem
is that, in this partitioned space, a new point is always
deemed to fall into a region, hence it will always be asso-
ciated to one of the label represented in the training set.
Unfortunately in traffic classification, we also need to deal
with ‘‘other’’ traffic, generated by different applications. To
overcome this issue, we define a rejection criterion, whose
aim is basically to recognize traffic belonging to none of the
target training classes.

Given that Abacus signatures are probability mass func-
tions, we use a measurement index suitable to quantify
distribution similarity. Given two pmfs, there exist several
indexes to evaluate their degree of similarity. The Bhatta-
charyya distance (BD) [35] is a measure of divergence of
two probability density (or mass) functions. Given two
pmfs p and q over n discrete values, the Bhattacharyya dis-
tance BD(p, q) is defined by:

BDðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� B
p

where B ¼
Xn

i¼1

ffiffiffiffiffiffiffiffi
piqi
p

: ð5Þ

The Bhattacharyya distance, which is a particular case of
the Chernoff distance, has several properties. First, it veri-
fies the triangular inequality. Values of BD close to zero
indicates strong similarity (if pi = qi "i, B = 1 and BD = 0)
whereas values close to one indicate weak similarity. The
Bhattacharyya coefficient B 2 [0,1_] is the scalar product be-
tween the two vectors p0 ¼ ffiffiffiffiffi

p1
p

; . . . ;
ffiffiffiffiffi
pn
p� �

and
q0 ¼ ffiffiffiffiffi

q1
p

; . . . ;
ffiffiffiffiffi
qn
p� �

, which leads to a geometric interpreta-
tion of the coefficient B. In fact it can be seen as the cosine
of the angle between p

0
and q

0
. The Bhattacharyya distance

has been successfully applied in different contexts such as
signal selection [49], or classification [50].

In our context, we use BD to measure the separability of
two traffic classes. In particular, we reject the SVM label C
of a signature n whenever the distance BD(n,E[n(C)]) ex-
ceeds a given threshold R, i.e., the sample will be labeled
as unknown. E[n(C)] is the average signature computed
on the training samples of application C. Notice that the
average signature E[n(C)] identifies the center of the clus-
ter formed by all training set signatures of application C.
In other words, we accept SVM decision conditionally to
the fact that the observed traffic signature n lies within a
radius R from the center of the SVM training set for that
class. The selection of the threshold value is simple but del-
icate, as it heavily influences the performance of the classi-
fication in terms of both True Positive Rate and False
Positive Rate. In the paper we perform this process twice,
for the simple as well as the extended signatures.

However, there exist some cases where no false alarm
can be raised (i.e., non P2P-TV traffic will be always classify
as unknown), which makes Abacus robust by design. Let us
consider the case when traffic is received from one peer
only. Then, the Abacus signature n is a vector containing
a single 1 at the bin i⁄. In this case, the distance from the
center E[n(C)] (C for short) of the cluster of an arbitrary
application will be BDðn;CÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffi
Ci�

pq
. Suppose we

choose a threshold R, then we reject the classification if:

BDðn;CÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffi
Ci�

pq
< R

from which we can derive an acceptance condition on the
value of Ci� :

Ci� < ð1� R2Þ2:

In case we set R = 0.5 as in Section 4, we have that a sig-
nature is rejected whenever its most likely bin Ci� exceeds
(1 � 0.52)2 = 0.5625: notice from Fig. 1 this is never the
case for any P2P-TV applications, whose most likely bins
remain below 0.3. In other words, the criterion is robust
with respect to P2P-TV applications (whose signatures
are not rejected) and with client–server applications as
well (since any signature containing a single bin has forc-
ibly Ci� ¼ 1 and is thus rejected). Similarly, consider the
case when traffic is received by only two peers: any such
signature is a linear combination of two unit vectors and
it can simply be proved that it will be rejected too. There-
fore, also in this case, the signature is always rejected (clas-
sified as ‘‘unknown’’) and therefore no false alarm is raised.
To summarize, the criterion rejects any peer contacting
two or less other peers during a given time interval DT –
which basically means that client–server traffic will never
raise any false alarm, but will rather be correctly classified
by the engine as ‘‘Unknown’’.

The robustness of the rejection criterion has allowed us
to focus, throughout the paper, on a worst case analysis of
the false alarm rate. Indeed, we recall that considering the
Real Trace dataset, used to evaluate the amount of False
Positive classification, the number of signature composed
by less or equal to two peers is verified for a large fraction
of the samples: 62% and 82% in CAMPUS and ISP, respectively,
to which a 72% and 85% of UDP volume corresponds. All
this large amount of traffic cannot be misclassified by de-
sign, adding to the robustness of the classification frame-
work. Therefore, our evaluation focused on the remaining
signatures (i.e., with more than two peers), that could be
classified by Abacus, so to gather conservative results.
References

[1] PPLive. <http://www.pplive.com>.
[2] SOPCast. <http://www.sopcast.com>.
[3] TVAnts. <http://www.tvants.com>.
[4] Joost. <http://www.joost.com>.

http://www.pplive.com
http://www.sopcast.com
http://www.tvants.com
http://www.joost.com


1410 P. Bermolen et al. / Computer Networks 55 (2011) 1394–1411
[5] X. Hei, C. Liang, J. Liang, Y. Liu, K.W. Ross, A measurement study of a
large-scale P2P IPTV system, IEEE Transactions on Multimedia
(2007).

[6] Cisco Visual Networking Index: Forecast and Methodology 2009–
2014, 2010. <http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_
Networking_Solutions_White_Paper.html.

[7] E. Leonardi, M. Mellia, A. Horvath, L. Muscariello, S. Niccolini, D.
Rossi, Building a cooperative P2P-TV application over a Wise
Network: the approach of the European FP-7 STREP NAPA-WINE,
IEEE Communication Magazine 64 (6) (2008).

[8] S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network
identification of P2P traffic using application signatures, in: 13th
International Conference on World Wide Web (WWW’04), 2004, pp.
512–521, New York, NY, May.

[9] AW_. Moore, K. Papagiannaki, Toward the accurate identification of
network applications, in: Passive and Active Measurement (PAM’05),
Boston, MA, USA, 2005.

[10] J. Ma, K. Levchenko, C. Kreibich, S. Savage, G.M. Voelker, Unexpected
means of protocol inference, in: 6th ACM SIGCOMM Internet
Measurement Conference (IMC’06), Rio de Janeiro, BR, 2006, pp.
313–326.

[11] A. Finamore, M. Mellia, M. Meo, D. Rossi, KISS: stochastic packet
inspection classifier for UDP traffic, IEEE Transactions on Networking
18 (5) (2010) 1505–1515.

[12] A. McGregor, M. Hall, P. Lorier, J. Brunskill, Flow clustering using
machine learning techniques, in: PAM’04, Antibes Juan-les-Pins, Fr.,
2004, pp. 205–214.

[13] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, Class-of-
service mapping for QoS: a statistical signature-based approach to
IP traffic classification, in: 4th ACM SIGCOMM Internet
Measurement Conference (IMC’04), Taormina, IT 2004, pp.
135–148.

[14] A.W. Moore, D. Zuev, Internet traffic classification using bayesian
analysis techniques, in: ACM SIGMETRICS ’05, Banff, Alberta, Canada,
2005.

[15] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, P. Tofanelli, Revealing Skype
traffic: when randomness plays with you, in: ACM SIGCOMM’07,
Kyoto, Japan, 2007.

[16] L. Bernaille, R. Teixeira, K. Salamatian, Early application
identification, in: Conference on Future Networking Technologies
(CoNEXT’06), Lisboa, PT, 2006.

[17] M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli, Traffic classification
through simple statistical fingerprinting, ACM Computer
Communication Review 37 (1) (2007) 5–16.

[18] T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: multilevel
traffic classification in the dark, ACM Communication Review 35 (4)
(2005) 229–240.

[19] K. Xu, Z. Zhang, S. Bhattacharyya, Profiling internet backbone traffic:
behavior models and applications, in: ACM SIGCOMM’05,
Philadelphia, PA, 2005, pp. 169–180.

[20] S. Valenti, D. Rossi, M. Meo, M. Mellia, P. Bermolen, Accurate and
fine-grained classification of P2P-TV applications by simply counting
packets, in: Traffic Measurement and Analysis (TMA) Workshop at
IFIP Networking’09, Aachen, Germany, 2009.

[21] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods, Cambridge
University Press, New York, NY, 1999.

[22] N. Williams, S. Zander, G. Armitage, A preliminary performance
comparison of five machine learning algorithms for practical IP
traffic flow classification, ACM Computer Communication Review 36
(5) (2006) 5–16.

[23] C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines.
Available at <http://www.csie.ntu.edu.tw/cjlin/libsvm>.

[24] S. Valenti, D. Rossi, M. Meo, M. Mellia, P. Bermolen, An Abacus for
P2P-TV traffic classification, in: IEEE INFOCOM 2009, Demo Session,
2009.

[25] D. Ciullo, M.A. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi, M.
Telek, P. Veglia, Network awareness of P2P live streaming
applications: a measurement study, IEEE Transaction on
Multimedia 12 (1) (2010) 54–63.

[26] T. Silverston, O. Fourmaux, Measuring P2P IPTV systems, in:
Proceedings of ACM NOSSDAV, 2007.
[27] Y. Huang, T.Z.J. Fu, D. Chiu, J.C. S Lui, C. Huang, Challenges, design
and analysis of a large-scale P2P-VoD system, ACM Computer
Communication Review 38 (4) (2008) 375–388.

[28] M. Mellia, R. Lo Cigno, F. Neri, Measuring IP and TCP behavior on
edge nodes with Tstat, Computer Networks 47 (1) (2005) 1–21.

[29] IPP2P home page. <http://www.ipp2p.org/>.
[30] Y. Kulbak, D. Bickson, The eMule Protocol Specification, Technical

Report Leibniz Center TR-2005-03, School of Computer Science and
Engineering, The Hebrew University, 2005.

[31] G. Huang, Experiences with PPLive, in: Keynote Speech at ACM
SIGCOMM’07 Workshop on P2P-TV, Kyoto, Japan, 2007.

[32] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, M. Meo, P2P-TV
systems under adverse network conditions: a measurement study,
in: IEEE Infocom, Rio de Janeiro, 2009.

[33] B. Claise (Ed.), Cisco Systems NetFlow Services Export Version 9 IETF
RFC 3954, 2004.

[34] T. Jebara, R. Kondor, Bhattacharyya and expected likelihood kernels,
in: Proceedings of Conference on Learning Theory (COLT’03),
Washington, DC, USA, 2003.

[35] A. Bhattacharyya, On a measure of divergence between two
statistical populations defined by probability distributions, Bull.
Calcutta Math. Soc. 35 (1943) 99–109.

[36] T. Nguyen, G. Armitage, A survey of techniques for internet traffic
classification using machine learning, IEEE Communications Surveys
& Tutorials 10 (4) (2008) 56–76.

[37] H. Kim, KC Claffy, M. Fomenkov, D. Barman, M. Faloutsos, K.Y. Lee,
Internet traffic classification demystified: myths, caveats, and the
best practices, in: Proceedings of ACM CoNEXT ’08, 2008.

[38] D. Rossi, S. Valenti, Fine-grained traffic classification with Netflow
data, in: TRaffic Analysis and Classification (TRAC) Workshop at
IWCMC 2010, Caen, France, 2010.

[39] A. Finamore, M. Meo, D. Rossi, S. Valenti, Kiss to Abacus: a
comparison of P2P-TV traffic classifiers, in: Traffic
Measurement and Analysis (TMA) Workshop at PAM’10, Zurich,
Switzerland, 2010.

[40] J. Erman, A. Mahanti, M.F. Arlitt, C.L. Williamson, Identifying and
discriminating between web and peer-to-peer traffic in the network
core, WWW 2007, Banff, Canada, 2007.

[41] T. Karagiannis, K. Papagiannaki, N. Taft, M. Faloutsos, Profiling the
end host, in: Passive and Active Measurement (PAM’07), Louvain-la-
neuve, Belgium, 2007.

[42] M. Iliofotou, H. Kim, P. Pappu, M. Faloutsos, M. Mitzenmacher, G.
Varghese, Graph-based P2P traffic classification at the internet
backbone, in: 12th IEEE Global Internet Symposium (GI2009), Rio de
Janeiro, Brazil, 2009.

[43] X. Zhang, J. Liu, B. Li, TSP Yum, CoolStreaming/DONet: a data-driven
overlay network for peer-to-peer live media streaming, in: Proc. of
IEEE INFOCOM ’05, 2005.

[44] X. Liao, H. Jin, Y. Liu, L.M. Ni, D. Deng, Anysee: scalable live streaming
service based on inter-overlay optimization, in: Proceedings of IEEE
INFOCOM ’06, 2006.

[45] B. Cohen, Incentives build robustness in BitTorrent, in:
Proceedings of the 1st Workshop on Economics of Peer-to-Peer
Systems, 2003.

[46] X. Hei, C. Liang, J. Liang, Y. Liu, K.W. Ross, A measurement study of a
large-scale P2P IPTV system, IEEE Transactions on Multimedia 9 (8)
(2007) 1672–1687.

[47] C. Wu, B. Li, S. Zhao, Exploring large-scale peer-to-peer live streaming
topologies, ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMCCAP) 4 (3) (2008) 1–23.

[48] H. Chang, S. Jamin, W. Wang, Live streaming performance of the
Zattoo network, in: Proceedings of ACM SIGCOMM Internet
Measurement Conference (IMC’09), Chicago, Illinois, 2009.

[49] T. Kailath, The divergence and Bhattacharyya distance measures in
signal selection, IEEE Transaction on Communication 15 (1967) 52–60.

[50] F. Matusita, A distance and related statistics in multivariate analysis,
in: P.R. Krishnaiah (Ed.), Proceedings of International Symposium on
Multivariate Analysis, Academic Press, 2007, pp. 187–200.

[51] R. Wang, Y. Liu, Y. Yang, X. Zhou, Solving P2P traffic identification
problems Via optimized support vector machines, in: IEEE/ACS
International Conference on Computer Systems and Applications,
(AICCSA ’07) 2007, pp. 165–171.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_Paper.html
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.ipp2p.org/


P. Bermolen et al. / Computer Networks 55 (2011) 1394–1411 1411
Paola Bermolen was born in 1976 in Monte-
video. In 2004, she received a degree in
Mathematics from the Universidad de la
Republica, Montevideo, Uruguay, where she
joined the Mathematical Department (IMERL)
in 1998 as teaching assistant. In October 2006
she joined TELECOM ParisTech in Paris, France
as a PhD student She obtained the Ph.D.
degree in Telecommunication Engineering in
Mars 2010. She has coauthored several papers
presented in inter-national conferences and
journals, and she has been involved in differ-

ent national and international projects. Her research interests are related
to statistical characterization and analysis of network traffic, network
modeling, and performance analysis in heterogeneous networks.
Marco Mellia was born in Torino, Italy, on 09/
01/1971. He graduated from the Politecnico di
Torino with summa cum laude degree in
Electronic Engineering in February 1997 and
with Ph.D. in Electronic and Telecommunica-
tion Engineering in 2001. Between February
and October 1997, he was a Researcher sup-
ported by CSELT (Italian Public Telephone
Research Company), developing a Call
Admission Control Algorithm for ATM net-
works and computer tools for simulation and
performance evaluation. He was a Visiting

Ph.D. student starting from February 1999 to November 1999 at the
Computer Science Department of the Carnegie Mellon University, where
he worked with Prof. Hui Zhang and Ion Stoica. From February to March

2002 he visited the Sprint Advanced Technology Laboratories Burlingame,
California, working at the IP Monitoring Project (IPMON). He has coau-
thored over 100 papers published in international journals and presented
in leading international conferences, all of them in the area of telecom-
munication networks. He participated in the program committees of
several conferences including ACM SIGCOMM, IEEE Infocom, IEEE Glo-
becom and IEEE ICC. Currently he’s working at the Dipartimento di
Elettronica e Telecomunicazioni at Politecnico di Torino as an Assistant
Professor.

Michela Meo graduated from the Politecnico
di Torino with a summa cum laude degree in
Electronic Engineering in July 1993. In July
1997 she obtained the Ph.D. degree at
Politecnico di Torino in Telecommunications
Engineering. In November 1999, she became
an Assistant Professor at Politecnico di Torino;
and since November 2006, she is Associate
Professor. She coauthored more than 120
papers, in international journals or confer-
ences. She edited five special issues of inter-
national journals, including ACM Monet and

Performance Evaluation Journal. She was general chair and program chair
of ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM); she was also program chair of
the IEEE International Workshop on QoS in Multiservice IP Networks
(QoS-IP), the 1st IEEE International Workshop on Mobile Vehicular Net-
works (MoVeNet)) and of the 14th IEEE Symposium on Computers and
Communications (ISCC); and she was in the program committee of about
50 international conferences, including Sigmetrics, Infocom, ICC and
Globecom.

Dario Rossi (M’02) is an Associate Professor at
the Computer Science and Networking
department of Telecom ParisTech, in Paris,
France. He received his M.Sc. and Ph.D.
degrees from Politecnico di Torino in 2001
and 2005, respectively, and held during 2003–
2004 a visiting researcher position in the
Computer Science division at University of
California, Berkeley. At Telecom ParisTech, he
is responsible for several European research
projects, such as FP7 NAPA-WINE, Celtic
TIGER, TIGER2 and TRANS, ANR Connect. He

has coauthored over 50 papers in leading conferences and journals, holds
four patents and he participated in the program committees of several
conferences including IEEE ICC, IPCCC and Globecom. His research

interests include peer-2-peer networks, Internet traffic measurement,
green networking and traffic engineering.

Silvio Valenti is a Ph.D. student at the Com-
puter Science and Networking department at
Telecom ParisTech, in Paris, France, since
August 2008. He received its M.Sc. Degree in
Computer Science Engineering at Politecnico
di Torino, Italy, in February 2008. His research
interests consists in peer-2-peer networking,
Internet traffic classification and high-speed
packet processing.


	Abacus: Accurate behavioral classification of P2P-TV traffic
	Introduction
	Classification framework
	The rationale
	Behavioral P2P-TV signatures

	Methodology and dataset
	Workflow overview
	Dataset and oracle
	Testbed traces
	Real traces


	Experimental results
	Baseline results
	Signatures portability
	Portability across network sites (NS)
	Portability across access technologies (AT)
	Portability across channel popularity (CP)
	Portability over time (TI)
	Portability over emulated impairments (EI)


	Sensitivity analysis
	Impact of the rejection threshold R
	Impact of time interval ΔT
	Impact of training set size
	Impact of training set diversity
	Impact of SVM kernel and binning strategy

	Improving the accuracy: extending the signature
	Related work
	Conclusions
	Acknowledgments
	Rejection criterion
	References




