english Icono del idioma   español Icono del idioma  

Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12008/48408 Cómo citar
Título: A path forward : 6G resource allocation from a deep Q-learning perspective.
Autor: Inglés, Lucas
Rattaro, Claudina
Belzarena, Pablo
Tipo: Ponencia
Palabras clave: 6G mobile communication, Q-learning, Codes, Network slicing, Resource management, Faces, Service level agreements, 6G, Resource Allocation, Deep Q-Learning, Network Slicing
Fecha de publicación: 2024
Resumen: The 6G paradigm presents a myriad of challenges, as it promises complex features such as managing diverse traffic profiles under a unified infrastructure. While many studies propose deep-Q learning (DQN) approaches for resource management in Network Slicing (NS) schemes, these algorithms often face a core issue: they are not easily reproducible in real-world environments due to their high dimensionality. In this study, we analyze a distributed DQN-based radio resource allocation methodology, designed to efficiently meet specific Service Level Agreements (SLAs). Our contribution includes making the code publicly available for further research and evaluation. We then assess its performance through a comparison with a Baseline DQN approach, highlighting the strengths and limitations of both models.
Editorial: IEEE
EN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5.
Financiadores: CSIC R&D project : 5/6G Optical Network Convergence: an holistic view
Citación: Inglés, L., Rattaro, C. y Belzarena, P. "A path forward : 6G resource allocation from a deep Q-learning perspective" [en línea]. EN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5.
Aparece en las colecciones: Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato   
IRB24.pdfCamera-Ready1,18 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons