english Icono del idioma   español Icono del idioma  

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12008/48408 How to cite
Title: A path forward : 6G resource allocation from a deep Q-learning perspective.
Authors: Inglés, Lucas
Rattaro, Claudina
Belzarena, Pablo
Type: Ponencia
Keywords: 6G mobile communication, Q-learning, Codes, Network slicing, Resource management, Faces, Service level agreements, 6G, Resource Allocation, Deep Q-Learning, Network Slicing
Issue Date: 2024
Abstract: The 6G paradigm presents a myriad of challenges, as it promises complex features such as managing diverse traffic profiles under a unified infrastructure. While many studies propose deep-Q learning (DQN) approaches for resource management in Network Slicing (NS) schemes, these algorithms often face a core issue: they are not easily reproducible in real-world environments due to their high dimensionality. In this study, we analyze a distributed DQN-based radio resource allocation methodology, designed to efficiently meet specific Service Level Agreements (SLAs). Our contribution includes making the code publicly available for further research and evaluation. We then assess its performance through a comparison with a Baseline DQN approach, highlighting the strengths and limitations of both models.
Publisher: IEEE
IN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5.
Sponsors: CSIC R&D project : 5/6G Optical Network Convergence: an holistic view
Citation: Inglés, L., Rattaro, C. y Belzarena, P. "A path forward : 6G resource allocation from a deep Q-learning perspective" [en línea]. EN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5.
Appears in Collections:Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica

Files in This Item:
File Description SizeFormat  
IRB24.pdfCamera-Ready1,18 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons