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Abstract—The 6G paradigm presents a myriad of
challenges, as it promises complex features such as
managing diverse traffic profiles under a unified infras-
tructure. While many studies propose deep-Q learning
(DQN) approaches for resource management in Network
Slicing (NS) schemes, these algorithms often face a
core issue: they are not easily reproducible in real-
world environments due to their high dimensionality. In
this study, we analyze a distributed DQN-based radio
resource allocation methodology, designed to efficiently
meet specific Service Level Agreements (SLAs). Our
contribution includes making the code publicly available
for further research and evaluation. We then assess
its performance through a comparison with a Baseline
DQN approach, highlighting the strengths and limita-
tions of both models.

Index Terms—6G, Resource Allocation, Deep Q-
Learning, Network Slicing

I. INTRODUCTION

In a world where the speed and connectivity of
5G have transformed our expectations, the transition
to 6G networks demands even more advanced and
flexible infrastructures to accommodate the increas-
ing complexity of communication systems. A key
innovation in this area is Network Slicing (NS),
which allows a single network to be segmented into
multiple virtual slices, each tailored to specific service
requirements.

However, in 6G, NS presents unique challenges
due to the diversity of services and the need for
highly customized functionalities. Efficient resource
management is critical to ensure that Service Level
Agreements (SLAs) are met. This necessitates the
use of flexible, self-optimizing systems capable of
adapting in real-time to changing network conditions.

Deep Reinforcement Learning (DRL), and par-
ticularly Deep Q-Learning (DQN), has emerged as
a promising approach to addressing these challenges
[1] [2]. DQN enables the optimization of network re-
sources in real time, dynamically adapting to meet the
stringent demands of 6G networks, such as increased
data traffic, ultra-low latency, and enhanced Quality
of Service (QoS) and Quality of Experience (QoE)
requirements.
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However, the application of DQN in 6G network
slicing is not without its difficulties. The intricate
dynamics of 6G networks, coupled with their complex
service-level requirements, pose significant challenges
for real-time resource allocation.

In this research, we explore the use of DQN for
resource allocation in 6G network slices [3], building
on prior work [4], and provide a comparative analysis
with a baseline DQN approach to assess performance
improvements.

The remainder of this paper is organized as follows:
Section II discusses the theoretical background and
the specific challenges of network slicing in 6G.
Section III details the DQN algorithm and its im-
plementation. Section IV presents the results of our
comparative analysis. Finally, Section V concludes
with a summary of our findings and future directions.

II. FUNDAMENTALS

A. Radio resource allocation challenges in 6G

Efficient resource allocation optimizes system per-
formance, ensures fairness, and meets diverse QoS
requirements in 6G. In 5G, Orthogonal Frequency
Division Multiplexing (OFDM) is used, and it is
expected that 6G will follow a similar path while
still considering the evaluation of other options. The
OFDM system enhances data transmission by parti-
tioning the frequency spectrum into multiple orthog-
onal subcarriers. The frequency domain is segmented
into Resource Blocks (RBs), each comprising 12
subcarriers. RBs are the minimal units for resource
allocation, forming a grid in both time and frequency
dimensions.

RB allocation directly impacts on the user QoE:
more resources enable higher data exchange and lower
communication delays. However, careful allocation
is necessary for optimal performance. 6G networks
face several challenges: Heterogeneous Integration,
merging diverse technologies while maintaining ser-
vice delivery; Surging Data Traffic, managing in-
creased connectivity demands; Network Density, ad-
dressing complexities in ultra-dense deployments; and
Dynamic Environments, adapting to fluctuating user
mobility and varying conditions.



Artificial Intelligence (AI) and Network Slicing
offer advanced solutions for these challenges.

B. Network Slicing and Dynamic Resource Allocation

Network slicing (NS) allows subdividing a uni-
fied network infrastructure into distinct segments or
“slices” for different services, ensuring dedicated QoE
levels. As depicted in Fig. 1, two levels of scheduling
are required: intra-slice and inter-slice.

Inter-Slice Scheduling: Prioritizes resource allo-
cation among slices according to strategic objectives
and service hierarchies to meet SLAs.

Intra-Slice Scheduling: Manages resource distri-
bution within each slice, ensuring provisioning with-
out affecting other slices.
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Fig. 1: Inter and Intra slice scheduling scheme.

This research focuses on inter-slice resource alloca-
tion because of its broader impact on overall network
efficiency and the ability to manage diverse Service
Level Agreements (SLAs). By prioritizing resources
between different services, inter-slice scheduling op-
timizes network performance, making it a key factor
for ensuring SLA compliance.

C. Reinforcement Learning and Deep Q-Learning

Reinforcement Learning (RL) enhances decision-
making through rewards and penalties, with DQN
being an advanced form of RL. At the core of DQN
are Q values, which represent the future expected re-
wards of actions taken in specific states. By iteratively
updating these Q values based on previous outcomes,
the algorithm gradually learns an optimal policy for
resource allocation.

The Q value is calculated using the Bellman equa-
tion, which assesses the cumulative reward of an
action, accounting for both immediate and future
rewards. This allows DQN to make decisions that op-
timize long-term performance, making it particularly
suitable for complex, dynamic environments such as
6G network slicing.

More specifically, DQN can optimize dynamic
resource allocation within Radio Access Networks
(RAN), improving both QoE and overall network
performance. Its efficient Q-value updates, off-policy
flexibility, and model-free learning make it ideal for
addressing complex state spaces, such as those in
mobile networks.

However, selecting appropriate state and action
policies is crucial to avoid impractical solutions.
Our research focuses on identifying effective DQN

strategies for resource allocation in mobile networks,
ensuring the algorithm’s suitability for real-world
deployment.

D. Simulator Framework

Given the ongoing development of 6G, we use
the Py5cheSim 5G network simulator to evaluate the
DQN algorithm. Py5cheSim [5] supports NS and vari-
able numerology, offering a comprehensive environ-
ment for testing and real-world application analysis,
providing insights into DQN’s operational challenges
and benefits in 5G/B5G networks.

III. SCHEDULING ALGORITHMS

This study analyzes inter-slice resource allocation
in 6G networks using DQN algorithms. Existing
DQN-based research primarily focuses on centralized
solutions, which often face challenges with dimen-
sionality, learning efficiency, and computational pro-
cessing. The work in [4] introduces a Distributed
Scheduler for resource management, which we adopt
in our research.

To evaluate the efficacy of the distributed scheduler,
we compare it with a Baseline centralized algorithm
that offers a holistic system perspective. This compar-
ison helps highlight the strengths and weaknesses of
the Distributed Scheduler.

A. Baseline Scheduler

Inspired by [6], the Baseline Scheduler operates
within a non-distributional framework, assessing the
overall system state and implementing actions that
influence the entire system. Rewards are derived from
system performance metrics. The state, action, and
reward definitions are as follows:

1) State: The state is defined as the number of
packets received by each slice during a time window,
represented as a vector of n elements. Each element
corresponds to the state of a slice, influenced by the
traffic profile. Higher traffic results in larger numerical
values.

2) Action: Actions allocate resources to slices by
selecting from a set of predefined allocations. For
example, with two slices and four RBs, possible
allocations are [1, 3], [2, 2], or [0, 4]. This approach
balances control precision with efficient learning.

3) Reward: The reward function aims to minimize
resource waste and ensure that sufficient resources are
available for each slice to meet the SLAs. Rewards
are calculated as the aggregate Resource Block Usage
Ratio (RBUR) across slices and the number of users
meeting QoE benchmarks. Constants ψ and β balance
the importance of RBUR and QoE, both set to 1 in
this study.



B. Distributed Scheduler

In the distributed model, individual network slices
independently report their status to the base station
at time t. The base station calculates the reward for
previous actions taken at t − 1 and stores this in the
experience database. Based on each slice’s current
state and integrated model guidelines, the Resource
Blocks (RBs) are allocated accordingly. This approach
ensures that each slice receives resources in a way that
meets its specific SLA requirements. This behavior is
depicted in Fig. 2.
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Fig. 2: Distributed scheduler model.

The distributed scheduling approach used in this
paper is adopted from the methodology proposed
by Abiko et al. [4], where a distributed mechanism
was introduced for resource management in network
slicing. In our work, we have reproduced a simplified
version of their algorithm and made its implementa-
tion publicly available. Additionally, we have reduced
the dimensionality of the state representation, we have
used a different simulator, and we have compared
its performance against a Baseline centralized algo-
rithm in various traffic conditions to assess scalability
and efficiency from an SLA compliance perspective.
Our implementation and comparative analysis provide
deeper insights into the practical challenges and ben-
efits of distributed scheduling for 6G networks.

1) State: The state is defined by a six-element
tuple: Network Slice Requirements Satisfaction
(NSRS), Ratio of assigned and used Resource
Blocks (RBUR), Number of assigned Resource
Blocks, Throughput requirement, Number of User
Equipments (UEs) within the slice, and Accumulated
traffic in the buffer.

NSRS indicates user satisfaction with throughput
demands; values near one indicate high satisfaction,
while values near zero indicate unmet service levels.
RBUR measures resource utilization; values near one
signify optimal usage, while values near zero indicate
overallocation. The number of RBs allocated at time
t is the third element.

Throughput characterizes each slice, although other
QoS metrics such as delay and jitter may be relevant
in future studies. The demand level and accumulated
traffic provide insight into the slice’s condition and
rewards.

Incorporating multiple attributes enhances precision
but increases model complexity and learning cost. The
state configuration was modified from the original
work [4] to fit research objectives and simulator con-
ditions, aligning evaluation with the original study’s
outcomes.

2) Action: In this model, an action adjusts resource
allocation for a slice, quantified as a change in RBs
using Resource Block Adjustment (RBA)1:

RBA =
⌊
(−1)a × 2⌊a/2⌋−1

⌋
, (1)

where a is a discrete output from the decision-
making algorithm. The scope of actions is restricted to
eight to maintain stability and avoid abrupt changes.
Equation (1) uses a floor function to ensure integer
results.

The current allocation of RBs at time t (ARBt) is:

ARBt = ARBt−1 +RBA. (2)

This model adjusts resources for individual slices
without considering the states of other slices, enhanc-
ing focus and efficiency. A “Best Effort” slice acts as
a dynamic reserve, accommodating varying demands
from non-contractual users based on network condi-
tions, absorbing unused RBs from other slices.

3) Reward: The reward is defined as:

R = NSRS ·RBUR, (3)

where NSRS and RBUR balance resource alloca-
tion and user requirement fulfillment. The product of
these indicators influences decision evaluation, aiming
to maximize both. NSRS and RBUR range from 0 to
1, so R also falls within this range. An R value of 1
indicates optimal resource allocation and requirement
satisfaction.

IV. EVALUATION

Using the Py5cheSim simulation framework, we
conducted an empirical analysis of both algorithms
under the specified traffic conditions. The imple-
mentations, available at [7], were developed using
neural network models built with the Keras library in
Python. The following sections describe the common
evaluation scenario for both algorithms, present the
outcomes, and provide a comprehensive analysis.

A. Traffic profiles

For the evaluation, we tested three groups: Slice-0,
Slice-1, and Slice-2, each with different transmission
parameters (see Table I). The objective was to assess
both algorithms’ performance with varying traffic
profiles. The SLA values were based on optimal
functioning without RB restrictions.

To assess the impact of varying active slices, we
configured slices with different activation patterns:

1In the work of [4] this quantity is called IDRB



(a) Baseline Scheduler for Slice-0. (b) Baseline Scheduler for Slice-1. (c) Baseline Scheduler for Slice-2.

(d) Distributed Scheduler for Slice-0. (e) Distributed Scheduler for Slice-1. (f) Distributed Scheduler for Slice-2.

Fig. 3: Results of user throughput over time for both algorithms.

TABLE I: Evaluation traffic profiles

Traffic parameters
Slice-0 Slice-1 Slice-2

# clients 4 4 5

Pkt. size 300 bytes
constant

Pareto
[Mean = 410 bytes]

Lognormal
[Mean = 800 bytes]

Pkt. arrival Uniform
[0, 0.6] ms

Uniform
[0, 1.2] ms

Uniform
[0, 1] ms

SLA 7.5 Mbps 4.5 Mbps 11 Mbps

Slice-0 is active from 0% to 75% of simulation time,
Slice-1 is active throughout 100% of the simulation,
and Slice-2 is active from 25% to 100% of simulation
time.

B. Results and analysis

Both algorithms were trained using the same equip-
ment and simulation settings. The results are shown
in Figs. 3(a,b,c) show the results for the baseline
scheduler, while Figs. 3(d,e,f) display the results for
the distributed approach. The simulation lasted a total
of 5 seconds, allowing for a more precise examination
of the effects of resource allocation, as inter-slice
assignments were made every 100 milliseconds.

1) Baseline: The results show that when only two
out of three slices are active, i.e., in the ranges
[0%,25%] and [75%,100%] of the simulation time,
the network performs as desired, with sufficient RBs
to meet each user’s needs and the SLA.

When all slices are active, i.e., in the range
[25%,75%], the system performs poorly, characterized
by intermittent disruptions in user throughput. The
scheduler misprioritizes slices, leaving some with in-
sufficient resources and reducing network availability.

The state definition does not accurately reflect the
system and lacks a strong correlation with action and

reward. It prioritizes emptying the packet buffer of
the slice with the most packets, neglecting slices with
fewer packets.

The states and actions lack granularity. Refining
them extensively is prohibitive due to memory re-
quirements, leading to imprecise assignments and
overprovisioning of resources, impairing reward and
learning.

When analyzing RBUR, we operated in a scenario
with enough RBs to meet all slice requirements,
leading to overassignment. Incorporating RBUR into
the reward function poses challenges, suggesting that
weighting the QoE reward higher might be more
effective.

The DQN solution encounters difficulties in com-
plex scenarios. The current prioritization strategy,
based on packet queue size, struggles to achieve op-
timal resource allocation and desired QoE. Handling
RBUR is intricate, and scaling the problem to more
slices increases complexity, making this solution less
scalable.

Thus, a basic model is unsuitable for this prob-
lem. It overlooks much information, and decisions
based on an inaccurate buffer representation lead to
inefficiency. While it may work in specific situations,
extensive training and practical considerations beyond
this research’s scope make the model inefficient.

2) Distributed Scheduler Solution: Fig.4 shows the
inter-slice resource allocation. The three simulation
stages, during which different slices are activated,
are distinguishable. The smooth slope of resource
allocation during slice activation and deactivation
indicates granular resource growth without abrupt
jumps. Resources align with expected service levels,



with Slice-2 receiving the most resources. The Best
Effort slice acts as a buffer, providing resources to
other slices as needed.

Fig. 4: Resources allocated in the Distributed Sched-
uler.

Figs. 3(d,e,f) show the throughput of users for
Slice-0, Slice-1, and Slice-2, respectively, over sim-
ulation time. Each figure includes a horizontal line
representing the SLA for the respective slice. Perfor-
mance meets SLA requirements at all times, regard-
less of the number of active slices.

The comprehensive definition of action and state
sets accurately characterizes the network and strongly
correlates with the reward. The algorithm’s learning
time is shorter than the Baseline Scheduler due to
distributed learning, which stores possible states for
a single slice rather than all possible combinations.
This reduces learning time, crucial for real network
adoption.

Resource utilization for Slice-1 (the most unpre-
dictable traffic) exceeds 81%, and is even higher for
other slices.

The results demonstrate that the distributed sched-
uler performs efficiently in the simulated environment,
achieving better resource allocation than the base-
line. However, the convergence time of the model is
closely related to the traffic profile, and the ability
to adapt to changing traffic patterns may require
further adjustments. Although the algorithm demon-
strates robustness in stable traffic scenarios, there
may be a need to explore adaptive mechanisms that
allow the model to adjust more quickly to sudden
shifts in traffic demand without requiring retraining.
Addressing these limitations could further enhance the
flexibility and responsiveness of the system.

V. CONCLUSIONS AND FUTURE WORK

In summary, the distributed scheduler outperformed
the non-distributed one in SLA compliance, resource
utilization, learning time, and service availability. A
key contribution of this work is making the code and

simulator publicly available, enabling further compar-
ative analyses and improvements.

Exploring more sophisticated action selection
mechanisms can optimize resource allocation and bal-
ance slices better. Addressing issues related to model
definition, state and action granularity, and precise
resource assignment is crucial for desired network be-
havior and optimization in multi-slice environments,
achievable through distributed learning.

The Distributed approach shows promise for im-
plementing DQN-based algorithms in 6G, offering
flexibility and resource optimization. It performs well
for predictable traffic slices, and even with variability,
resource allocation meets slice requirements, but can
improve in RBUR.

Implementing DQN in a real network requires
careful consideration due to its impact on user perfor-
mance. Techniques and tools are needed to mitigate
low network availability.

Although the algorithm performs well in the current
setup with a limited number of clients, scalability
remains a critical concern as the number of clients
increases. In future work, we aim to study the im-
pact of DQN algorithms in larger network scenarios
with a higher number of users. Distributed learning
techniques are expected to enhance the algorithm’s
scalability by reducing the problem’s dimensionality.
As network complexity grows, it is essential to ensure
that the DQN algorithm remains both efficient and
effective.
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