Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12008/48408
Cómo citar
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Inglés, Lucas | - |
dc.contributor.author | Rattaro, Claudina | - |
dc.contributor.author | Belzarena, Pablo | - |
dc.date.accessioned | 2025-02-14T18:02:32Z | - |
dc.date.available | 2025-02-14T18:02:32Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Inglés, L., Rattaro, C. y Belzarena, P. "A path forward : 6G resource allocation from a deep Q-learning perspective" [en línea]. EN: 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5. | es |
dc.identifier.uri | https://hdl.handle.net/20.500.12008/48408 | - |
dc.description.abstract | The 6G paradigm presents a myriad of challenges, as it promises complex features such as managing diverse traffic profiles under a unified infrastructure. While many studies propose deep-Q learning (DQN) approaches for resource management in Network Slicing (NS) schemes, these algorithms often face a core issue: they are not easily reproducible in real-world environments due to their high dimensionality. In this study, we analyze a distributed DQN-based radio resource allocation methodology, designed to efficiently meet specific Service Level Agreements (SLAs). Our contribution includes making the code publicly available for further research and evaluation. We then assess its performance through a comparison with a Baseline DQN approach, highlighting the strengths and limitations of both models. | es |
dc.description.sponsorship | CSIC R&D project : 5/6G Optical Network Convergence: an holistic view | es |
dc.format.extent | 5 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | en | es |
dc.publisher | IEEE | es |
dc.relation.ispartof | 2024 IEEE URUCON, Montevideo, Uruguay, 18-20 nov. 2024, pp. 1-5. | es |
dc.rights | Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014) | es |
dc.subject | 6G mobile communication | es |
dc.subject | Q-learning | es |
dc.subject | Codes | es |
dc.subject | Network slicing | es |
dc.subject | Resource management | es |
dc.subject | Faces | es |
dc.subject | Service level agreements | es |
dc.subject | 6G | es |
dc.subject | Resource Allocation | es |
dc.subject | Deep Q-Learning | es |
dc.subject | Network Slicing | es |
dc.title | A path forward : 6G resource allocation from a deep Q-learning perspective. | es |
dc.type | Ponencia | es |
dc.contributor.filiacion | Inglés Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Rattaro Claudina, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.contributor.filiacion | Belzarena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. | - |
dc.rights.licence | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) | es |
Aparece en las colecciones: | Publicaciones académicas y científicas - Instituto de Ingeniería Eléctrica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | ||
---|---|---|---|---|---|
IRB24.pdf | Camera-Ready | 1,18 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons